Читать книгу «Метамышление. Как нейронауки помогают нам понять себя» онлайн полностью📖 — Стивен М. Флеминг — MyBook.

Построение моделей мира

Зрительная система – одна из наиболее изученных частей мозга человека и обезьян. Различные области задней части мозга обрабатывают разные аспекты визуального сигнала. Чем выше их цифровое обозначение, тем более продвинутой стадии обработки изображения они соответствуют. Области V1 и V2 извлекают информацию о направлении линий и формах, V4 – о цвете, а V5 – о движении объектов. На выходе из областей V мы попадаем в русло вентрального зрительного потока, задача которого – собрать все части информации воедино и идентифицировать цельные объекты, такие как лица, тела, столы и стулья. Параллельно области мозга, входящие в дорсальный зрительный поток, отслеживают, где располагаются и как перемещаются объекты[19].


Правое полушарие мозга человека. Отмечено расположение четырех долей головного мозга, мозжечка и ключевых зрительных путей


В начале вентрального зрительного потока отдельные клетки мозга кодируют лишь небольшую часть внешнего мира – например, участок в нижнем левом углу нашего поля зрения. Но по мере продвижения вверх по иерархической структуре клетки, подобно отдаляющейся камере, начинают расширять свой фокус. В конце концов достигается высшая точка иерархии, в которой уже не столь важно, где отображается стимул. Гораздо большую роль играет, что он воссоздает: лицо, дом, кошку, собаку и так далее. Объектив максимально отдален, и информация об идентичности объекта представлена независимо от его расположения.

Однако крайне важно, что информация в зрительной системе не течет в одном направлении. Долгое время преобладало мнение, согласно которому обработка информации в мозге является системой прямого регулирования: она получает информацию из внешнего мира, обрабатывает ее тайными, хитроумными способами, а затем выдает команды, заставляющие нас ходить и говорить. Сейчас такая модель («вход – выход») вытеснена множеством данных, которые в нее не вписываются. В зрительной системе, например, существует столько же, если не больше, связей, направленных в противоположную сторону. Они так и называются – обратная связь, или «сверху вниз». Информация распространяется как вперед, так и назад; постоянные циклы нейронной активности поставляют данные как с нижних уровней иерархии на верхние, так и в обратном направлении. Такой способ рассмотрения механизмов сознания известен как предиктивная обработка. Это радикально иное понимание работы мозга, хотя оно имеет уже продолжительную интеллектуальную историю, о которой свидетельствует обширная библиография в примечаниях[20].

Архитектура предиктивной обработки особенно хорошо подходит для решения обратных задач. Вместо пассивного получения информации мозг может использовать связи «сверху вниз», для того чтобы активно строить наше восприятие внешнего мира и придавать форму тому, что мы видим, слышим, думаем и чувствуем. Более высокие уровни иерархии предоставляют информацию о том, с чем мы можем столкнуться в той или иной ситуации, а также о диапазоне гипотез, которые мы способны принять. Например, вы знаете, что у вашего друга есть лабрадор, и поэтому ожидаете увидеть собаку, когда входите в его дом, но не знаете, где именно в вашем зрительном поле она появится. Эта предварительная высокоуровневая информация – пространственно-инвариантное понятие «собака» – обеспечивает соответствующим контекстом более низкие уровни зрительной системы, помогая им легко интерпретировать размытое пятно в форме собаки, устремляющееся к вам, когда вы открываете дверь.

Степень, до которой наши системы восприятия должны полагаться на такие закономерности, в свою очередь, зависит от того, насколько мы сомневаемся в информации, поступающей от наших органов чувств. Вспомните дилемму Петрова. Если бы он был уверен в безупречности и безошибочности технологии обнаружения ракет, то в меньшей степени был бы готов усомниться в том, что говорила ему система. Стоит ли нам корректировать свои убеждения при получении новых данных, зависит от того, насколько надежной мы считаем эту информацию.

В действительности байесовские версии прогностической обработки говорят нам о том, что стоит комбинировать различные источники информации (наши предварительные убеждения и данные, поступающие через органы чувств) обратно пропорционально нашей неуверенности в них. Можно представить этот процесс как помещение теста для пирога в гибкую форму для выпечки. Форма – это наши предварительные предположения о мире. Тесто же представляет собой сенсорную информацию – световые и звуковые волны, улавливаемые глазами и ушами. Если поступающие данные точны или информативны, то тесто будет густым или почти твердым и на него почти не повлияет форма для выпечки. Если же, напротив, данные менее точны, то тесто будет более жидким и конечный продукт примет соответствующие очертания.

К примеру, глаза предоставляют более точную информацию о местонахождении объектов, нежели слух. Это означает, что зрение может изолировать предполагаемый источник звука, исказив наше восприятие его местоположения. Этим умело пользуются чревовещатели, способные «передавать» свой голос марионетке, которую они держат на расстоянии вытянутой руки. Истинное мастерство чревовещания заключается в умении говорить, не шевеля губами. Если добиться этого, мозг зрителей сделает все остальное, соотнеся звук с его следующим наиболее вероятным источником – говорящей куклой[21].

Таким образом, вполне логично, что отслеживание неопределенности – неотъемлемая часть того, как мозг обрабатывает сенсорную информацию. Наблюдения за клетками зрительной коры головного мозга показывают, как это может происходить. Хорошо известно, что движущиеся объекты, такие как машущая рука или прыгающий мяч, активируют нейроны в области мозга обезьян, известной как MT (аналог человеческой V5). Но клетки в MT активируются не при любом направлении движения. Некоторые из клеток больше реагируют на объекты, движущиеся влево, другие – вверх, вниз и во всех других направлениях. Когда частота возбуждения клеток МТ фиксируется в результате многократных воспроизведений различных направлений движения, формируется распределение, подобное тому, что мы наблюдали в игре в кости. В каждый отдельно взятый момент времени эти популяции клеток МТ можно считать сигнализирующими о неопределенности в отношении конкретного направления движения, аналогично тому, как искаженное общее значение игральных костей сигнализирует о вероятности выпадения ноля или тройки[22].

Неопределенность крайне важна и для оценки состояния нашего собственного тела. Информация о том, где в пространстве располагаются конечности, как быстро бьется сердце или какова интенсивность болевого стимула, поставляется в череп сенсорными нейронами. С точки зрения мозга разница между электрическими импульсами, проходящими по зрительному нерву, и нейронными сигналами, поступающими из кишечника, сердца, мышц или суставов, весьма незначительна. Все это – сигналы, сообщающие о том, что может происходить за пределами черепа, и искаженные иллюзиями вроде описанных выше оптических. В одном известном эксперименте поглаживание резиновой руки синхронно с настоящей (скрытой) рукой испытуемого убеждало его, что резиновая рука – его собственная.

В свою очередь, иллюзия обладания новой резиновой рукой приводила к ослаблению нейронных сигналов, посылаемых мозгом настоящей руке. Подобно тому как кукла перехватывает голос чревовещателя, синхронность наблюдений за резиновой рукой и ощущений при поглаживании уменьшает чувство обладания настоящей рукой[23].

Используем неопределенность, чтобы сомневаться

Конечно, никто не говорит, что каждый раз, познавая мир вокруг, мы специально прибегаем к уравнениям Байеса. Напротив, механизмы, используемые мозгом для решения обратных задач, срабатывают сами по себе – немецкий физик Герман фон Гельмгольц назвал это процессом «бессознательных умозаключений». Мозг быстро, буквально мгновенно оценивает влияние света и тени на впадины, выпуклости и шахматные доски, изображения которых мы видели на предыдущих страницах.

Аналогичным образом мы воссоздаем лицо близкого друга, вкус хорошего вина и запах свежеиспеченного хлеба, комбинируя предварительные предположения и информацию от органов чувств; тщательно взвешивая их с учетом соответствующих неопределенностей. Нейробиолог Анил Сет называет наше восприятие мира «контролируемой галлюцинацией» – наилучшим предположением о том, что на самом деле есть.

Очевидно, что оценка неопределенности, характеризующей те или иные источники информации, – основа нашего восприятия мира. Но изобретательные решения обратных задач дают замечательный побочный эффект. Оценивая неопределенность для того, чтобы воспринимать мир, мы обретаем способность сомневаться в том, что воспринимаем. Чтобы увидеть, как неопределенность с легкостью превращается в сомнение, давайте снова обратимся к игре в кости. Чем ближе общее значение к 15 или к нулю, тем больше мы уверены, что на кубике с подвохом выпала соответственно тройка или ноль. Но в средней части графика, где серые и белые столбики равны по высоте (общие значения равняются семи и восьми), доказательств недостаточно для любого из вариантов. Если я спрошу вас, насколько вы уверены в своем ответе, будет разумно, если вы усомнитесь, когда речь пойдет о значениях семь и восемь, но будете более уверены в случае меньших или бóльших результатов. Другими словами, мы знаем, что, скорее всего, знаем ответ, если неопределенность низкая, и знаем, что, скорее всего, не знаем ответ, когда неопределенность высокая.

Правило Байеса дает математическую основу для размышлений об этих оценках неопределенности, которые называют еще решениями второго типа, поскольку они касаются точности других решений – в отличие от решений первого типа, которые касаются окружающего мира. Согласно теореме Байеса, нам следует больше сомневаться, когда дело касается ответов, приходящихся на центр графика, поскольку именно они чаще всего приводят к ошибкам и с наименьшей вероятностью оказываются правильными. И напротив, по мере приближения к краям распределения вероятность правильного ответа возрастает. Используя неопределенность, присущую решению обратных задач, мы в качестве бонуса достигаем рудиментарной формы метапознания – и никаких дополнительных механизмов для этого не требуется[24].

Поскольку отслеживание неопределенности играет основополагающую роль в том, как мозг воспринимает мир, неудивительно, что эта форма метапознания доступна множеству животных. Один из первых – и наиболее изобретательных – экспериментов по изучению метапознания у животных был проведен психологом Дэвидом Смитом, работавшим с бутылконосым дельфином по имени Натуа. Смит обучил Натуа нажимать на разные рычаги в аквариуме в зависимости от частоты слышимого им звука. Низкочастотный звук варьировался от очень низкого до относительно высокого, почти высокочастотного. Таким образом, как и в нашей игре в кости, создавалась зона неопределенности, когда сложно было понять, какой же ответ правильный[25].

Когда Натуа научился справляться с этим заданием, в аквариум добавили третий рычаг, нажав на который можно было пропустить текущий звук и сразу перейти к следующему – дельфиний аналог пропуска вопроса в тесте. Смит рассудил, что если Натуа, будучи не уверен в ответе, откажется принимать решение, вместо того чтобы угадывать, то сможет добиться более высокой общей точности. Именно это Смит и обнаружил. Результаты показали, что чаще всего Натуа нажимал на третий рычаг, когда звук был пограничным. Как пишет Смит, «в случае неуверенности дельфин явно сомневался и колебался между двумя возможными ответами, но когда был уверен, то так устремлялся к выбранному ответу, что разгонял волну и заливал аппаратуру исследователей»[26].

Макаки – обезьяны, которые встречаются по всей Азии (и любят воровать еду у туристов в храмах и святилищах), – тоже легко обучаются отслеживать свою неуверенность в похожих ситуациях. В одном эксперименте макак обучали определять самую большую фигуру на экране компьютера. Затем им нужно было выбрать между двумя иконками. Первая иконка означала рискованную ставку (три кусочка еды в случае правильного ответа, за ошибку еду убирали), в то время как другой, безопасный вариант гарантировал один кусочек еды – обезьяний вариант игры «Кто хочет стать миллионером?». Обезьяны чаще выбирали рискованный вариант, когда отвечали правильно, что красноречиво свидетельствует о метапознании. Что впечатляет еще больше, они сразу же, без дополнительного обучения, справились с оценкой уверенности в своих ответах в другом тесте на память, исключив предположение, что они просто учатся ассоциировать определенные стимулы с ответами разной степени уверенности. С помощью похожего задания исследователи из лаборатории Адама Кепекса, расположенной в Колд-Спринг-Харбор в Нью-Йорке, продемонстрировали, что крысы тоже могут оценивать свою правоту насчет того, какой из двух запахов преобладает в смешанном аромате. Есть даже некоторые свидетельства, что птицы, как и обезьяны, способны переносить свои наработанные метакогнитивные навыки из одного испытания в другое[27].