Хотим познать лишь материю и силы, которые ей движут. Метафизика нас не интересует.
Манифест Общества естествоиспытателей города Брно, где в 1865 году впервые была прочитана статья Менделя[144]
Весь органический мир – результат бесчисленных сочетаний и вариаций относительно небольшого числа факторов. <…> Эти факторы – частицы, которые наука наследственности должна исследовать. Подобно тому, как физика и химия обращаются к молекулам и атомам, биологические науки должны постигать эти частицы, чтобы объяснить <…> феномены мира живого.
Хуго де Фриз[145]
Когда весной 1856 года Дарвин приступал к своему опусу об эволюции, Мендель решил вернуться в Вену[146], чтобы пересдать экзамен, заваленный в 1850-м. На этот раз он ощущал себя намного увереннее. Два года Грегор изучал физику, химию, геологию, ботанику и зоологию в Венском университете, после чего в 1853 году вернулся в монастырь и получил место замещающего учителя в Высшей реальной школе города Брно. Руководство школы очень трепетно относилось к экзаменационным проверкам и квалификации учителей, так что пришло время снова попытаться сдать сертификационный экзамен. Мендель подал соответствующую заявку в Вену.
К сожалению, вторая попытка тоже оказалась катастрофической. Мендель был болен – скорее всего, из-за сильной тревоги. Он прибыл в Вену с раскалывающейся головой и в ужасном настроении и в первый же из трех дней испытаний повздорил с экзаменатором по ботанике. Предмет разногласий в точности неизвестен, но вероятнее всего, спор касался образования видов, изменчивости и наследственности. Мендель решил не продолжать экзамен, вернулся в Брно и смирился с судьбой замещающего учителя. Больше он не предпринимал попыток получить сертификат.
В конце лета, все еще переживая из-за проваленного экзамена, Мендель собрал урожай гороха. Это был не первый его урожай: Грегор уже три года скрещивал горох в стеклянной монастырской теплице. В окрестных хозяйствах он добыл 34 сорта гороха и принялся скрещивать растения внутри каждого сорта, чтобы отобрать среди них «чистокровные» (или чистые линии) – такие сорта, в которых потомки ничем не отличаются от родителей: ни окраской цветков, ни текстурой семян[147]. Такие растения из поколения в поколение «оставались неизменными без всяких исключений»[148], писал Мендель. Подобное порождало подобное. Материал для экспериментов, таким образом, был готов.
Мендель заметил, что у чистых линий есть четкие наследуемые признаки с несколькими вариантами проявления. При скрещивании высоких растений получаются только высокие; низкорослые растения порождают только карликовые. У одних линий все семена гладкие, у других – угловатые и морщинистые. Незрелые стручки – или зеленые, или ярко-желтые; зрелые – или равномерно выпуклые, или с перетяжками между горошинами. Мендель перечислил семь признаков чистых линий:
Текстура поверхности семян (гладкая или морщинистая).
Цвет семян (желтый или зеленый).
Окраска цветков (белая или пурпурная).
Расположение цветка (верхушечное или пазушное).
Цвет стручка (зеленый или желтый).
Форма стручка (равномерно выпуклый или с перетяжками).
Высота растения (высокое или низкое).
Мендель заметил, что у каждого признака есть как минимум два варианта – как бывает два варианта произношения слова или расцветки пиджака (у признаков, с которыми работал Мендель, было всего два варианта проявления, но в природе часто встречаются признаки с большим числом вариантов – например, у некоторых растений цветки могут быть белыми, пурпурными, лиловыми или желтыми). Позже биологи назовут эти варианты аллелями, от латинского allos, что примерно означает «один из двух подтипов какого-то типа». Пурпурный и белый представляют два аллеля одного признака – окраски цветков. Высокое и низкое – два аллеля другого признака – высоты растений.
Чистые линии были лишь исходным материалом для эксперимента. Мендель знал: чтобы добраться до природы наследственности, нужны гибриды; только «бастард» (так немецкие ботаники называли экспериментальные гибриды) даст ключ к пониманию природы чистоты. Позже об этом забыли[149], но на самом деле Мендель отлично осознавал огромное значение своего исследования: он писал, что интересующий его вопрос критически важен в контексте «истории эволюции органических форм»[150]. Удивительно, но всего за два года ему удалось наработать базовый материал для изучения некоторых важных свойств наследственности. Если кратко, Мендель задался вопросом: получится ли растение средней высоты, если скрестить высокое растение с низким? Смешаются ли эти два аллеля?
Получение гибридов было утомительным занятием. В природе горох, как правило, самоопыляется. Пыльники и рыльце пестика зреют рядом в тесной «лодочке», и пыльца просто осыпается на рыльце родного цветка. Совсем другое дело перекрестное опыление. Чтобы создать гибриды, Менделю приходилось «кастрировать» каждый цветок, удаляя пыльники, и переносить оранжевый порошок пыльцы из одного цветка в другой. Он работал в одиночку, сгорбившись над грядками; в одной руке – кисточка для пыльцы, в другой – пинцет для отщипывания пыльников. Свою рабочую шляпу Грегор вешал на арфу, и потому на каждое посещение сада его напутствовал кристально чистый звук одной ноты. Это была его музыка.
Сложно сказать, насколько другие монахи аббатства были осведомлены о занятиях Менделя и интересовались ли ими вообще. Еще в начале 1850-х Мендель покушался на более смелый вариант эксперимента – тайком развел в своей келье белых и серых мышей и пытался получить их гибриды, – однако настоятель монастыря, обычно терпимый к причудам Менделя, на сей раз вмешался. Монах, склоняющий мышей к соитию, чтобы раскрыть природу наследственности, – это было уже слишком даже по меркам августинцев. Тогда Мендель переключился на растения и перенес свои эксперименты в теплицу. Противиться такому решению настоятель не стал: эксперименты с мышами он пресек, но гороху согласился дать шанс.
Поздним летом 1857 года монастырский сад[151] раскрасился белыми и пурпурными сполохами – зацвел первый гибридный горох. Мендель отметил окраску цветков каждого растения, а когда созрели стручки, раскрыл створки и изучил семена. Затем он провел новые гибридизации: скрестил низкие растения с высокими, желтостручковые – с зеленостручковыми, обладателей морщинистых горошин – с обладателями гладких. В следующем порыве вдохновения Мендель скрестил гибриды друг с другом и получил гибриды гибридов. В подобном духе эксперименты продолжались восемь лет. Посадки тем временем вышли за пределы теплицы и заняли прямоугольный участок суглинка 6 х 30 м рядом с трапезной. Этот участок Мендель мог видеть из окна своей кельи. Когда ветер вздымал занавески, комната будто бы превращалась в гигантский микроскоп с горохом на предметном стекле. Пальцы Менделя немели от бесконечного вылущивания гороха, а его рабочий журнал был под завязку заполнен таблицами и пометками с данными о тысячах скрещиваний.
«Как ни мала мысль, она все же может заполнить всю жизнь»[152], – сказал философ Людвиг Витгенштейн[153]. Действительно, жизнь Менделя, на первый взгляд, была заполнена крошечными мыслями. Посев, цветение, опыление, обрывание, вылущивание, подсчет – и опять все сначала. Этот процесс был мучительно скучным, но Мендель знал, что маленькие мысли часто вырастают в глобальные законы. Если бы мы могли выделить самое важное наследие мощной научной революции, прокатившейся по Европе XVIII века, это было бы осознание, что природа подчиняется единообразным и всеобъемлющим законам. Та же сила, что заставила яблоко упасть с ветки Ньютону на голову, заставляет планеты двигаться по своим орбитам. Если существует универсальный закон наследственности, значит, и зарождение гороха, и зарождение людей происходит в соответствии с ним. Опытная делянка Менделя, может, и была мала, но это вовсе не лишало его больших научных амбиций.
«Эксперименты продвигались медленно, – писал Мендель. – Сначала требовалось определенное терпение, но вскоре я обнаружил, что дела идут лучше, если вести несколько экспериментов одновременно». Проводя несколько скрещиваний параллельно, он получал данные быстрее и постепенно начал различать в них некоторые закономерности: непредвиденное постоянство, консервативные соотношения, количественную ритмичность. Наконец-то он вплотную подобрался к внутренней логике наследственности.
Первую закономерность было легко заметить. У гибридов первого поколения индивидуальные наследственные черты – растение высокое или низкое, с зелеными семенами или с желтыми – совершенно не смешивались. Высокие растения при скрещивании с карликовыми неизменно давали только высокие. От гибридизации обладателей круглых горошин с обладателями морщинистых получались экземпляры только с круглыми горошинами. Этой закономерности подчинялись все семь выделенных Менделем признаков. По его словам, «характер гибридов» не был промежуточным, а «повторял одну из родительских форм». Мендель назвал варианты признаков, которые «берут верх»[154] над другими, доминантными, а пропадающие – рецессивными.
Даже если бы Мендель на этом закончил эксперименты, огромный вклад в теорию наследственности уже был бы сделан. Существование доминантных и рецессивных аллелей признаков противоречило теориям XIX века о смешанном наследовании: у гибридов Менделя не было промежуточных черт. Проявлялся лишь один аллель, заставляя другой вариант признака исчезнуть.
Но куда пропадает рецессивный признак? Доминантный аллель его поглощает или устраняет? Чтобы ответить на этот вопрос, Мендель провел второй эксперимент. Он переопылил друг с другом гибриды от скрещивания высоких растений с низкими, получив третье поколение гороха[155]. Так как высокорослость – доминантный признак, все родительские особи в этом эксперименте были высокими, а признак низкорослости как бы пропадал. Результаты же их скрещивания оказались совершенно неожиданными. У части потомков низкорослость восстановилась[156] в первозданном виде после исчезновения на целое поколение. То же самое произошло и с остальными шестью признаками. Белые цветки исчезли у гибридов первого поколения, чтобы вновь появиться у гибридов второго. Мендель понял, что гибридный организм – составная структура с заявляющим о себе доминантным аллелем и скрытым рецессивным (Мендель называл такие варианты формами; термин «аллель» ввели генетики только в 1900-х).
Изучая математические связи – соотношения – между разными типами потомков от каждого скрещивания, Мендель начал строить модель наследования признаков[157]. Согласно этой модели, каждая форма признака определяется независимой неделимой частицей информации. Для каждого признака сушествуют два варианта частиц (два аллеля): определяющие высокий рост или низкий, белые цветы или фиолетовые, и так далее. Растение наследует по одной копии частиц от каждого родителя: один аллель – от отцовской особи через спермий, другой – от материнской через яйцеклетку. У гибрида сохраняются в целости оба аллеля, хотя обнаруживает свое существование только один.
Между 1857 и 1864 годами Мендель тысячами лущил плоды гороха и маниакально заносил в таблицы результаты гибридизаций («желтые семена, зеленые семядоли, белые цветы»). Данные оставались поразительно согласующимися. Маленькая делянка в монастырском саду поставляла ошеломляющие объемы данных для анализа: 28 тысяч растений, 40 тысяч цветков, около 400 тысяч семян. «В самом деле, нужна некоторая отвага[158], чтобы взяться за столь масштабный труд», – напишет позже Мендель. Но отвага – не то слово. В его работе больше проявлялось другое качество, которое можно было бы определить как чуткость (tenderness).
Этим словом редко описывают науку или ученых. Оно имеет общие корни с «уходом» (tending) – занятием фермера или садовника, но еще и с «натяжением» (tension), как у усика гороха, тянущегося к солнцу или к опоре. Мендель был в первую очередь садовником. Его гениальность подпитывалась не глубокими знаниями догматов биологии (к счастью, он провалил экзамен, притом дважды), а скорее инстинктивным знанием сада, сочетающимся с острой наблюдательностью. Кропотливое перекрестное опыление сеянцев, тщательное ведение таблиц с цветами семядолей и другими признаками вскоре наградили Менделя находками, необъяснимыми с позиций классического понимания наследования.
Эксперименты Менделя говорили, что наследственность можно объяснить только передачей дискретных единиц информации от родителей к потомкам. Спермий несет одну копию этой информации (аллель), яйцеклетка – другую (второй аллель); организм, таким образом, получает по одному аллелю от каждого из родителей. Когда этот организм сам производит спермии или яйцеклетки, аллели разделяются вновь: в яйцеклетку или спермий попадает лишь один из них – чтобы соединиться в новой комбинации в следующем поколении. Один аллель может доминировать над другим, когда они вместе. В присутствии доминантного аллеля рецессивный будто бы исчезает. Но если растение следующего поколения получает два рецессивных аллеля, свойства этого аллеля снова проявляются. Содержащаяся в одном аллеле информация неделима; сами частицы наследственности всегда остаются целыми.
Пример Доплера вернулся к Менделю: за шумом пряталась музыка, за кажущимся беспорядком скрывались законы, и только глубоко искусственный эксперимент – выведение гибридов чистых линий с простыми признаками – мог выявить эти скрытые закономерности. В основе великого разнообразия живых организмов – высоких, низких, морщинистых, гладких, зеленых, желтых – лежали частицы наследственной информации, передающиеся от поколения к поколению. Каждый признак наследуется как единое целое, самостоятельное, отчетливое и постоянное. Хоть Мендель и не дал название своей единице наследственности, он открыл ключевые свойства гена[159].
8 февраля 1865 года, через семь лет после выступления Дарвина и Уоллеса на встрече Линнеевского общества в Лондоне, Мендель представил первую часть своей статьи[160] на собрании куда менее помпезном: он обращался к фермерам, ботаникам и прочим биологам в Обществе естествоиспытателей города Брно (вторую часть он прочитал 8 марта, месяцем позже). Об этом историческом событии осталось мало записей. Известно, что в небольшом помещении Менделя слушали примерно 40 человек. Статья, набитая десятками таблиц и таинственными обозначениями признаков и вариантов, была весьма непростой даже для статистиков. Биологам же она, вероятно, казалась полной абракадаброй. Ботаники изучали в основном морфологию, не нумерологию. Подсчеты вариантов семян и цветков у десятков тысяч гибридных образцов должны были сильно озадачить современников Менделя; идея скрывающихся в природе мистических числовых «гармоний» вышла из моды вместе с Пифагором. После доклада Менделя один профессор ботаники решил обсудить «Происхождение видов…» Дарвина и теорию эволюции. Никто из слушателей не понял, как связаны эти темы. Даже если Мендель знал о возможной связи между «единицами наследственности» и эволюцией – а его черновые записи указывают на поиски такой связи, – в тот момент он не высказал об этом ничего определенного.
Статью Менделя опубликовал ежегодный журнал Proceedings of the Brno Natural Science Society[161]. Немногословный в жизни, на бумаге Мендель был еще лаконичнее: итог почти десятилетней работы он уместил всего на 44 удивительно унылых страницах. Копии были отправлены в десятки учреждений, включая английские Королевское и Линнеевское общества и Смитсоновский институт в Вашингтоне. Сам Мендель запросил 40 оттисков, которые, снабдив подробным предисловием, разослал ученым. Вполне вероятно, среди них был и Дарвин[162], но нет никаких свидетельств прочтения им этой статьи.
А далее воцарилось, как выразился один генетик, «одно из самых странных затиший в истории биологии»[163]. С 1866 по 1900 год статью процитировали всего четыре раза, что фактически означало ее научную кончину. Даже в 1890-е, когда вопросами человеческой наследственности и манипулирования ею серьезно озаботились политики США и Европы, имя и работа Менделя оставались неизвестными. Исследование, ставшее основой современной биологии, было погребено на страницах местечкового журнала, который читали в основном растениеводы затерянного в Центральной Европе городка.
В канун нового 1867 года Мендель отправил письмо в Мюнхен физиологу растений швейцарского происхождения Карлу фон Негели, приложив описание своих экспериментов. Негели ответил только через два месяца (что уже само по себе говорило о дистанцировании) сообщением вежливого, но ледяного тона. Авторитетный ботаник, Негели не уделил особого внимания Менделю и его работе. Питая инстинктивное недоверие к ученым-любителям, он небрежно приписал к своему ответу: «лишь эмпирически, <…> нельзя доказать рационально»[164], – будто бы экспериментально выведенные законы были хуже умозрительных.
Но Мендель не сдался и продолжил писать. Из всех коллег-ученых уважения Негели он искал больше всего, и следующие его письма были почти надрывными, в них сквозило отчаяние. «Я знал, что полученные мной результаты трудно увязать с современной наукой»[165], – писал Мендель. И добавлял, что, конечно, «изолированный эксперимент – рискованный вдвойне»[166]. Но Негели оставался скептичным и пренебрежительным, часто даже резким. Ему казалось абсурдным даже допущение, что Менделю удалось вывести фундаментальный закон природы – на что вообще покушаться рискованно, – лишь составляя таблицы гороховых гибридов. Если Мендель верил в святость Церкви, то должен был придерживаться ее воззрений; сам Негели верил в святость Науки.
Негели изучал другое растение – ястребинку с желтыми цветками – и убедил Менделя попробовать воспроизвести свои открытия на нем. Это был катастрофически неудачный выбор. На горохе Мендель остановился после тщательных раздумий: доводами в пользу этого объекта служили половое размножение, четко различающиеся варианты признаков и – при должном старании селекционера – возможность перекрестного опыления. Ястребинка же, хоть Мендель и Негели об этом не подозревали, может размножаться бесполым путем (без пыльцы и яйцеклеток). Перекрестно опылить ястребинку практически невозможно, ее гибриды получаются очень редко. Результаты предсказуемо оказались полной ерундой. Мендель пытался разобраться в математике гибридных ястребинок (которые в действительности и гибридами-то не были), но не мог уловить никаких закономерностей, типичных для гороха. Между 1867 и 1871 годами Мендель трудился еще усерднее, чем раньше. Он выращивал тысячи ястребинок на другом участке сада, кастрируя цветы тем же пинцетом и перенося пыльцу той же кисточкой, что и в опытах с горохом. Письма к Негели становились все более удручающими. Негели отвечал время от времени, но его ответы были редкими и снисходительными. Видного ботаника мало заботили все более и более путаные бредни монаха-самоучки из Брно.
В ноябре 1873 года Мендель написал Негели в последний раз[167]. Страшно сокрушаясь, он сообщал, что не может довести эксперименты до конца: его избрали на должность аббата, и новые административные обязанности не оставляют возможностей для опытов с растениями. «Я чувствую себя по-настоящему несчастным[168] из-за того, что должен забросить свои растения <…> полностью», – писал Мендель. Наука отодвинулась на задний план. Копились налоги. Ждали назначения новые священнослужители. Счет за счетом, письмо за письмом, научное воображение Менделя постепенно задыхалось под грузом административной работы.
Грегор Мендель написал лишь одну монументальную статью о гибридах гороха. Здоровье стало подводить его в 1880-х, постепенно заставляя отойти от дел – всех, кроме организации садовых работ и любимой метеорологии. 6 января 1884 года он умер[169] в Брно от почечной недостаточности. В местной газете вышел некролог, но там ни слова не было об экспериментах Менделя. Пожалуй, самой лучшей в нем была короткая цитата из стихотворения, которое молодой монах посвятил своему аббату: «Мягкий, щедрый и добрый <…> Цветы он любил»[170].
О проекте
О подписке