Цитаты из книги «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» Сэма Кина📚 — лучшие афоризмы, высказывания и крылатые фразы — MyBook. Страница 16
image
Впечатляющую способность справляться с витамином А белые медведи начали развивать около 150 тысяч лет назад, когда небольшие группы аляскинских бурых медведей отделились от других и мигрировали на север, жить во льдах. Однако биологи всегда подозревали, что важные генетические изменения, которые сделали белых медведей такими, какие они есть, произошли не постепенно, а очень быстро, практически сразу. Аргументы выглядели следующим образом. После того, как любые две группы животных разделяются географически, они начинают приобретать различные мутации ДНК. С накоплением мутаций эти группы развиваются в отдельные виды с различным строением тела, обменом веществ, поведением. Однако не вся ДНК изменяется с одинаковой скоростью. Хорошо законсервированные гены, такие, как Hox, изменяются очень медленно, на протяжении целых геологических периодов. Изменения прочих генов могут проходить быстро, особенно если их владельцы переживают стресс, связанный со сменой обстановки. Например, когда эти бурые медведи бродили по мрачным ледяным просторам за полярным кругом, любые полезные мутации, позволяющие бороться с холодом – например, возможность переваривать богатое витамином А мясо тюленей – могли дать медведям важное преимущество, позволило бы им иметь больше детенышей и лучше о них заботиться. И чем суровее была окружающая среда, тем быстрее такие гены могли распространиться во всей популяции.
11 марта 2018

Поделиться

Но для дополнительного (а иногда и более качественного) контроля ДНК клетки обращаются к «транскрипционным факторам» вроде витамина А. Этот витамин вкупе с другими факторами транскрипции связываются с ДНК и привлекают другие молекулы к ее расшифровке. Самое главное здесь то, что витамин А стимулирует рост и помогает быстро превратить незрелую клетку в полноценную кость, мышцу или другой орган. Витамин А особенно эффективно действует на различные слои кожи. Например, у взрослых этот витамин заставляет некоторые клетки передвигаться из внутренних слоев на поверхность, где они отмирают и превращаются в защитный наружный слой нашей кожи. Высокие дозы витамина А могут и повредить коже через «программированную гибель клеток». Эта генетическая программа, разновидность инициируемого суицида, помогает организму избавляться от больных клеток, так что клеточное «самоубийство» – это отнюдь не всегда плохо. Но, по неизвестным причинам, витамин А также может захватывать целую систему в определенных клетках кожи – и люди Баренца почувствовали это на своей шкуре.
11 марта 2018

Поделиться

Каждый из двухсот типов клеток нашего тела обладает уникальным механизмом сворачивания и метилирования ДНК – эти механизмы устанавливаются еще в период эмбрионального развития. Клетки, которым суждено стать клетками кожи, должны отключить все гены, которые отвечают за производство ферментов печени и нейротрансмиттеров, для других клеток также характерны аналогичные процессы. Такие клетки не просто запоминают свою установку до конца жизни: они используют его каждый раз, когда делятся уже во взрослом состоянии. Когда вы слышите о включении или выключении генов, знайте, что часто виновны в этом именно метилы и ацетилы. Метильные группы в целом настолько важны, что некоторые специалисты добавляют пятую официальную букву в ДНК-алфавит[34]: А, Г, Т, Ц и вдобавок мЦ – метилированный цитозин.
11 марта 2018

Поделиться

Клетки также закрывают доступ к ДНК, изменяя ее с помощью молекулярных «кнопок» – метильных групп (CH3). Метилы лучше всего прикрепляются к цитозину (букве Ц в генетическом алфавите), и поскольку метилы не занимают много места – атомы углерода невелики, а водорода и вовсе самые маленькие в периодической таблице, – даже подобный небольшой бугорок может предотвратить попадание других молекул внутрь ДНК и включение гена. Другими словами, добавление метильных групп изменяет гены.
11 марта 2018

Поделиться

Тем не менее ни Шпеман, ни Мак-Клинток, ни кто-либо еще не смогли объяснить сам механизм того, как клетки выключают гены. Это потребовало еще нескольких десятилетий работы. Оказалось, что хотя клетки не теряют генетической информации как таковой, они могут потерять доступ к этой информации, что фактически одно и то же. Мы уже видели, что ДНК должна выполнять прямо-таки акробатические трюки, чтобы вместить всю свою длинную фигуру в крохотное клеточное ядро. Чтобы не завязаться узлом во время этого процесса, ДНК обычно оборачивается, как ниточка от йо-йо, вокруг гистонов – катушек белка, которые затем складываются вместе и прячутся в ядре. Гистоны относятся к белкам, которые были обнаружены в хромосомах на ранних стадиях; сперва ученые считали, что именно они, а не ДНК, определяют наследственность. Кроме поддержания цепочки ДНК в незапутанном виде, гистонные катушки защищают клеточные механизмы от попадания в ДНК и производства РНК, эффективно выключая ДНК. Клетки управляют этими катушками с помощью химических веществ – ацетилов. Ацетил (COCH3), прикрепленный к гистону, раскручивает ДНК; если же этот ацетил убрать, «якорь» исчезнет и ДНК свернется обратно.
11 марта 2018

Поделиться

В конце XIX века образовалось два лагеря, стремившихся объяснить клеточную специализацию. Один из них возглавлял немецкий биолог Август Вейсман[33]. Он специализировался на изучении зиготы – это то, что образовывается, когда сперматозоид сливается с яйцеклеткой, и формирует первую клетку в организме животного. Вейсман доказывал, что эта самая первая клетка, очевидно, содержит полный набор молекулярных инструкций, но с каждым делением зиготы и ее дочерних клеток половина этих инструкций теряется. В конце концов остаются только те инструкции, которые предназначены для одного конкретного типа клеток – в него незрелые клетки и превращаются. Другие ученые, напротив, утверждали, что клетки сохраняют полный набор инструкций после каждого деления, однако игнорируют большинство из них после достижения определенного возраста. Немецкий биолог Ханс Шпеман разрешил этот вопрос в 1901 году с помощью зиготы саламандры. Он поместил одну из этих широких мягких зигот под перекрестьем своего микроскопа, подождал, пока она не разделится надвое, а затем обвил вокруг одной из клеток белокурый волос своей маленькой дочери Маргритт. (Кстати, непонятно, почему он использовал именно дочкины волосы – он не был лысым и мог с тем же успехом взять волос у себя. Возможно, потому что детский волос был тоньше.) Когда Шпеман затянул петлю из волоса, две клетки окончательно разделились, и ученый положил их в два отдельных блюдца, развиваться независимо друг от друга. Вейсман в этом случае предсказал бы появление двух деформированных полусаламандр. Однако обе клетки Шпемана выросли в полноценных, здоровых особей. Фактически они были одинаковы и в генетическом плане, то есть Шпеману удалось клонировать саламандру – и это в 1901 году! Ученые незадолго до этого вновь обратили внимание на труды Менделя, и работа Шпемана намекала на то, что клетки могут сохранять инструкции, и при этом способны включать и выключать гены.
11 марта 2018

Поделиться

Однако если там же накапливается слишком много витамина А (или же если Shh по какой-то причине перестает вырабатываться), градиент не может быть настроен должным образом. Клетки не могут выяснить свое расположение по отношению к средней оси, и органы вырастают совершенно ненормальными и даже чудовищными. В особо тяжелых случаях головной мозг может не разделиться на правое и левое полушарие: он так и остается большим неразделенным пузырем. Та же беда может приключиться с нижними конечностями. Если они получат слишком много витамина А, то могут срастись, что приведет к сиреномелии, или синдрому русалки. И соединенные полушария, и сросшиеся ноги приводят к смертельному исходу (в последнем случае оттого, что у организма не развивается ни анальное, ни мочеиспускательное отверстия). Но самые печальные последствия нарушения симметрии проявляются на лице. Курицы с переизбытком гена Соника имеют головы с очень широкой осью симметрии – иногда настолько широкой, что это приводит к формированию двух клювов (у млекопитающих – двух носов). Недостаток этого гена может привести к появлению носа с единственной огромной ноздрей или же к полному исчезновению этого органа. В особо печальных ситуациях носы могут появляться не с той стороны – например, на затылке. Но, возможно, самое печальное последствие, вызванное недостатком гена Соника, – это два глаза, растущие не там, где следует – на расстоянии нескольких сантиметров от лицевой оси. Оба глаза в таких случаях растут прямо посередине – получаются те самые циклопы[31], которых «по глупости» рисовали картографы.
11 марта 2018

Поделиться

Для этого создается своеобразный GPS-градиент. Когда мы еще являемся комком протоплазмы, зарождающийся позвоночный столб, который делит будущий организм посередине, начинает выделять белок, отвечающий за выработку гена Соника. Близлежащие клетки поглощают много этого белка, находящиеся вдали – гораздо меньше. В зависимости от того, сколько белка накоплено, клетки точно «знают», по какую сторону от срединной линии они находятся, и, следовательно, знают, в клетки какого типа им предстоит превратиться.
11 марта 2018

Поделиться

Как Hox-гены контролируют ориентацию нашего тела «сверху вниз», гены Shh – большинство ученых все же избегает упоминания ежа Соника – помогают контролировать осевую симметрию тела («лево-право»).
11 марта 2018

Поделиться

ген Соника оказался одним из самых важных в организме. Недостаток или неправильное функционирование этого гена могут привести к раковым заболеваниям и врожденному пороку сердца
11 марта 2018

Поделиться

1
...
...
22