Сэм Кин — лучшие цитаты из книг, афоризмы и высказывания
image
  1. Главная
  2. Библиотека
  3. ⭐️Сэм Кин
  4. Цитаты из книг автора

Цитаты из книг автора «Сэм Кин»

1 005 
цитат

Клетки также закрывают доступ к ДНК, изменяя ее с помощью молекулярных «кнопок» – метильных групп (CH3). Метилы лучше всего прикрепляются к цитозину (букве Ц в генетическом алфавите), и поскольку метилы не занимают много места – атомы углерода невелики, а водорода и вовсе самые маленькие в периодической таблице, – даже подобный небольшой бугорок может предотвратить попадание других молекул внутрь ДНК и включение гена. Другими словами, добавление метильных групп изменяет гены.
11 марта 2018

Поделиться

Тем не менее ни Шпеман, ни Мак-Клинток, ни кто-либо еще не смогли объяснить сам механизм того, как клетки выключают гены. Это потребовало еще нескольких десятилетий работы. Оказалось, что хотя клетки не теряют генетической информации как таковой, они могут потерять доступ к этой информации, что фактически одно и то же. Мы уже видели, что ДНК должна выполнять прямо-таки акробатические трюки, чтобы вместить всю свою длинную фигуру в крохотное клеточное ядро. Чтобы не завязаться узлом во время этого процесса, ДНК обычно оборачивается, как ниточка от йо-йо, вокруг гистонов – катушек белка, которые затем складываются вместе и прячутся в ядре. Гистоны относятся к белкам, которые были обнаружены в хромосомах на ранних стадиях; сперва ученые считали, что именно они, а не ДНК, определяют наследственность. Кроме поддержания цепочки ДНК в незапутанном виде, гистонные катушки защищают клеточные механизмы от попадания в ДНК и производства РНК, эффективно выключая ДНК. Клетки управляют этими катушками с помощью химических веществ – ацетилов. Ацетил (COCH3), прикрепленный к гистону, раскручивает ДНК; если же этот ацетил убрать, «якорь» исчезнет и ДНК свернется обратно.
11 марта 2018

Поделиться

В конце XIX века образовалось два лагеря, стремившихся объяснить клеточную специализацию. Один из них возглавлял немецкий биолог Август Вейсман[33]. Он специализировался на изучении зиготы – это то, что образовывается, когда сперматозоид сливается с яйцеклеткой, и формирует первую клетку в организме животного. Вейсман доказывал, что эта самая первая клетка, очевидно, содержит полный набор молекулярных инструкций, но с каждым делением зиготы и ее дочерних клеток половина этих инструкций теряется. В конце концов остаются только те инструкции, которые предназначены для одного конкретного типа клеток – в него незрелые клетки и превращаются. Другие ученые, напротив, утверждали, что клетки сохраняют полный набор инструкций после каждого деления, однако игнорируют большинство из них после достижения определенного возраста. Немецкий биолог Ханс Шпеман разрешил этот вопрос в 1901 году с помощью зиготы саламандры. Он поместил одну из этих широких мягких зигот под перекрестьем своего микроскопа, подождал, пока она не разделится надвое, а затем обвил вокруг одной из клеток белокурый волос своей маленькой дочери Маргритт. (Кстати, непонятно, почему он использовал именно дочкины волосы – он не был лысым и мог с тем же успехом взять волос у себя. Возможно, потому что детский волос был тоньше.) Когда Шпеман затянул петлю из волоса, две клетки окончательно разделились, и ученый положил их в два отдельных блюдца, развиваться независимо друг от друга. Вейсман в этом случае предсказал бы появление двух деформированных полусаламандр. Однако обе клетки Шпемана выросли в полноценных, здоровых особей. Фактически они были одинаковы и в генетическом плане, то есть Шпеману удалось клонировать саламандру – и это в 1901 году! Ученые незадолго до этого вновь обратили внимание на труды Менделя, и работа Шпемана намекала на то, что клетки могут сохранять инструкции, и при этом способны включать и выключать гены.
11 марта 2018

Поделиться

Однако если там же накапливается слишком много витамина А (или же если Shh по какой-то причине перестает вырабатываться), градиент не может быть настроен должным образом. Клетки не могут выяснить свое расположение по отношению к средней оси, и органы вырастают совершенно ненормальными и даже чудовищными. В особо тяжелых случаях головной мозг может не разделиться на правое и левое полушарие: он так и остается большим неразделенным пузырем. Та же беда может приключиться с нижними конечностями. Если они получат слишком много витамина А, то могут срастись, что приведет к сиреномелии, или синдрому русалки. И соединенные полушария, и сросшиеся ноги приводят к смертельному исходу (в последнем случае оттого, что у организма не развивается ни анальное, ни мочеиспускательное отверстия). Но самые печальные последствия нарушения симметрии проявляются на лице. Курицы с переизбытком гена Соника имеют головы с очень широкой осью симметрии – иногда настолько широкой, что это приводит к формированию двух клювов (у млекопитающих – двух носов). Недостаток этого гена может привести к появлению носа с единственной огромной ноздрей или же к полному исчезновению этого органа. В особо печальных ситуациях носы могут появляться не с той стороны – например, на затылке. Но, возможно, самое печальное последствие, вызванное недостатком гена Соника, – это два глаза, растущие не там, где следует – на расстоянии нескольких сантиметров от лицевой оси. Оба глаза в таких случаях растут прямо посередине – получаются те самые циклопы[31], которых «по глупости» рисовали картографы.
11 марта 2018

Поделиться

Для этого создается своеобразный GPS-градиент. Когда мы еще являемся комком протоплазмы, зарождающийся позвоночный столб, который делит будущий организм посередине, начинает выделять белок, отвечающий за выработку гена Соника. Близлежащие клетки поглощают много этого белка, находящиеся вдали – гораздо меньше. В зависимости от того, сколько белка накоплено, клетки точно «знают», по какую сторону от срединной линии они находятся, и, следовательно, знают, в клетки какого типа им предстоит превратиться.
11 марта 2018

Поделиться

Как Hox-гены контролируют ориентацию нашего тела «сверху вниз», гены Shh – большинство ученых все же избегает упоминания ежа Соника – помогают контролировать осевую симметрию тела («лево-право»).
11 марта 2018

Поделиться

ген Соника оказался одним из самых важных в организме. Недостаток или неправильное функционирование этого гена могут привести к раковым заболеваниям и врожденному пороку сердца
11 марта 2018

Поделиться

Однако будьте осторожны: перед тем как броситься в магазин за мегадозами витамина А специально для беременной супруги, нужно вспомнить, что слишком большое количество витамина А может вызвать серьезные врожденные дефекты. На самом деле организм умеет бороться с эффектами от приема витамина А и даже обладает несколькими генами (как ген с труднопроизносимым названием Tgif), которые могут значительно уменьшить концентрацию витамина А, если она будет слишком высокой. Это происходит частично оттого, что высокое содержание витамина А в эмбрионах может помешать развитию гена Shh, имеющего более глупое название – ген ежа Соника.
11 марта 2018

Поделиться

Витамин А взаимодействует с Hox-генами и смежными генами, чтобы строить головной мозг, легкие, глаза, сердце, конечности и практически все остальные органы. На самом деле витамин А настолько важен для клеток, что они строят специальные «подъемные мосты» в своих стенках, чтобы позволить этому и только этому витамину проникнуть внутрь. Однажды попав в клетку, витамин А связывается со специальными вспомогательными молекулами, а образовавшийся комплекс вступает в связь с двойной спиралью ДНК, активируя Hox и прочие гены. В то время как большинству сигнальных веществ приходится прикрепляться к клеточной стенке и сообщать свою информацию через маленькие отверстия, витамин А получает специальное разрешение: Hox-гены сумели бы построить очень мало в организме ребенка, если бы не его главное питательное вещество – витамин А.
11 марта 2018

Поделиться

Hox-гены (что, по правде говоря, для генов нехарактерно) остаются тесно связанными после сотен миллионов лет эволюции. Они практически всегда появляются вместе, располагаясь вдоль сплошных участков ДНК (у беспозвоночных наблюдается один участок примерно с десятью генами, у позвоночных – четыре примерно таких же). Что еще более необычно, позиция каждого из этих генов примерно соответствует положению в организме того органа, за который Hox-ген отвечает. Так, первый Hox-ген проектирует верхнюю часть головы, следующий строит что-то пониже и так далее, вплоть до последнего гена, формирующего нашу промежность и все, что ее окружает. Почему природа потребовала, чтобы пространственное планирование генов проходило сверху вниз, неизвестно, но, опять-таки, эта черта характерна для всех животных. Ученые считают ДНК, которая появляется в одной и той же основной форме во многих и многих видах, очень «консервативной», так как живые организмы обходятся с ней очень бережно, консервативно. Некоторые Hox-гены, а также гены, подобные им, сохранились в
11 марта 2018

Поделиться