Белицын Игорь Владимирович, b_i_w@mail.ru
Попов Андрей Николаевич, oleandr78@mail.ru
Попов Константин Павлович, kotik5637@mail.ru
Аннотация:
Одной из важнейших задач электроэнергетики является повышение качества электрической электроэнергии. В работе произведен анализ нормативных документов регламентирующих показатели качества электрической энергии. Рассмотрены основные технические мероприятия позволяющие повысить качество электроэнергии.
Ключевые слова: качество электрической энергии, импульсные напряжения, система электроснабжения, компенсация реактивной мощности, регулирование напряжения.
MEANS OF IMPROVING THE QUALITY OF ELECTRIC ENERGY IN MAIN ELECTRIC NETWORKS
Belitsyn Igor Vladimirovich, Associate Professor, b_i_w@mail.ru
Popov Andrey Nikolaevich, oleandr78@mail.ru
Popov Konstantin Pavlovich, kotik5637@mail.ru
Abstract:
One One of the most important tasks of the electric power industry is to improve the quality of electric power. The paper analyzes the normative documents regulating the quality indicators of electric energy. The main technical measures to improve the quality of electricity are considered.
Keywords: quality of electrical energy, pulse voltages, power supply system, reactive power compensation, voltage regulation.
Снижение качества электроэнергии является неотъемлемой частью цикла производства и потребления. На всех стадиях электроэнергия претерпевает изменения, поэтому получение идеальной синусоидальной трехфазной системы напряжений задача труднореализуемая. Поэтому основной задачей является именно минимизация влияния всех ступеней электроэнергетической системы на качество энергии.
Если говорить о системе генерации, то реализация задачи повышения качества упирается в совершенствование конкретных силовых машин, а именно генераторов, более точная подгонка деталей, использование новых магнитных материалов, работа с системами стабилизации генераторов, по типу АРВ, во время возникновения крупных аварий.
Поэтому еще на стадии генерации мы получаем синусоиду отличную от идеально, но наибольшее искажение электроэнергия претерпевает именно в системах передачи, распределения и потребления. Большая часть энергии просто теряется в линиях электропередач, переходя в тепло, а форма кривой напряжения искажается нагрузкой.
Все это негативно сказывается на системе в целом, и на потребителях этой самой энергии в первую очередь.
В понятие качества электроэнергии входит большое количество параметров, которые регламентируются стандартами ГОСТ 32144-2013.
К параметрам качества электроэнергии относят:
– Отклонение частоты;
– Отклонение напряжения;
– Суммарный коэффициент гармонических составляющих напряжения;
– Колебания напряжения и фликер;
– Несинуидальность напряжения;
– Несимметрия напряжения;
– Провалы напряжения и перенапряжения;
– Импульсные напряжения;
– Максимальное значение и длительность перенапряжения.
Также параметры качества электроэнергии принято делить на две группы: длительные и кратковременные.
Возникновение кратковременных изменений параметров качества электроэнергии, как правило, обусловлено коммутацией нагрузки большой мощности, грозовой активностью, авариями в сети.
Например, появление кратковременных перенапряжений может быть вызвано ударами молний вблизи линий электропередач или подстанций. Провалы напряжения могут быть следствием возникновения коротких замыканий, или включение в сеть мощной нагрузки.
Причины длительных отклонений параметров качества могут быть обусловлены особой нагрузкой, либо структурой сети, проектными ошибками, связанными с выбором оборудования или уровней напряжения, либо возрастающим уровнем нагрузки в сети, дисбалансом активной и реактивной мощности. Также сюда можно отнести длительные ненормальные режимы в распределительных сетях.
Со стороны потребителя выделяют приемники с нелинейной вольтамперной характеристикой, или несимметричной пофазной нагрузкой.
К нелинейной нагрузке относятся вентильные преобразователи, электродуговые сталеплавильные печи, установки дуговой и контактной сварки. Работа таких устройств вызывает возникновение высших гармонических составляющих, которые накладываются на основную частоту кривой напряжения, искажая ее. В преобразователях могут возникать гармоники вплоть до 25-го порядка, в печах это гармоники с 3 по 7, в сварке с 5 по 11.
Искажение формы кривой напряжения приводит к возникновению дополнительных потерь активной мощности во всех элементах сети: линиях электропередач, трансформаторах, электрических машинах, поскольку их сопротивление зависит от частоты. Также может возникать перегрев обмоток двигателей из-за возникновения паразитных полей, ускорение процесса старения изоляции в кабелях, трансформаторах и электрических машинах.
Несимметричная нагрузка обладает фазными токами, отличающимися своими величинами, что приводит к различным потерям напряжения в разных фазах. Несимметрия напряжений в сети вызывает перегрев обмоток асинхронных двигателей, в синхронных машинах возникают опасные вибрации.
Большое влияние на качество электроэнергии оказывает сама структура сетей и их топология. Говоря о совокупности сетей и качества электроэнергии обычно говорят о проблеме больших потерь электроэнергии. Поскольку наибольших уровень потерь, а именно, более 60 % от общего числа приходится именно на передачу электроэнергии по линиям электропередач и еще около 17 % приходится на эффект возникновения коронного разряда в магистральных сетях высокого напряжения. В распределительных сетях большие потери обусловлен высоким уровнем морального и технического устаревания сетевого комплекса.
Большие потери снижают общий уровень экономичности сетей и качества электроэнергии в целом, приводя к снижению питающего напряжения на шинах потребителя. От пониженного уровня напряжения в первую очередь страдают асинхронные двигатели, увеличивая свой потребляемый ток, что приводит к перегреву обмоток и старению изоляции. В целом работа на напряжении ниже номинального для всех видов нагрузок приводит к уменьшению их срока службы, а иногда и полному выходу из строя.
Для повышения качества электроэнергии используются различные технические мероприятия.
Традиционно, для повышения качества электроэнергии в электрических сетях применяют следующие технические мероприятия:
– Регулирование напряжения;
– Компенсация реактивной мощности;
– Установка фильтров;
– Оптимизация схем и режимов работы сети;
– Установка вольтодобавочных трансформаторов.
– Применение динамических компенсаторов искажения напряжения;
– Выравнивание нагрузок фаз;
1. ГОСТ 32144–2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. – Введ. 2014–07–01. – М.: Стандартинформ, 2014. – 19 с.
2. Железко. Ю. С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов. М.: ЭНАС, 2009. – 456 с.
3. Жежеленко, И. В… Высшие гармоники в системах электроснабжения промпредприятий / Жежеленко И. В. – М.: Энергоатомиздат, 2000.
4. Belitsyn I.V. The quality of electric power as a complex index / I.V. Belitsyn // International Conference «Process Management and Scientific Developments», Birmingham, United Kingdom, September. 2017. pp. 113–121.
5. Белицын, И. В. Оптимальный параметр регуляризации для определения электромагнитной совместимости линии электропередачи / И. В. Белицын // III международная научно-практическая конференция «Европейские научные исследования», Пенза, МЦНС «Наука и просвещение», 2017. С 48–53.
6. Белицын, И. В. Качество электрической энергии, проблемы нормативной базы / И. В. Белицын // Международная научно-практическая конференция «Прикладные и теоретические исследования», Самара, ЦНИК «Наука и просвещение», 2017. С 24–27.
Белицын И. В. – к. п. н., доцент, Попов А. Н. – к. т. н., доцент, Попов К. П. – студент группы 8Э-91, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.
Попов Андрей Николаевич, popov.a.n@mail.altstu.ru
Прийма Дмитрий Игоревич, priyma_dima@mail.ru
Аннотация:
С целью повышения надежности электроснабжения в электрических сетях используются автоматические пункты секционирования (АПС), которые разделяют (секционируют) линию на участки, что приводит к значительному сокращению времени отключенного состояния потребителей в случае возникновения аварии. Наиболее часто технологические нарушения происходят в сетях напряжением 6 – 10 кВ и приводят к большому недоотпуску электрической энергии. Наиболее протяженные фидеры, которые имеют длинные ответвления или ответственных потребителей, делят на части (секционируют), где и ставится автоматический пункт секционирования.
Наличие большого количества функций реклоузера приводит к усложнению конструкции, и в следствии этого, высокой стоимости. Установка дорогостоящих реклоузеров на воздушную линию напряжением 6 – 10 кВ не даёт положительного экономического эффекта на большинстве линий, а, следовательно, проблема с большим количеством недоотпуска электроэнергии в сетях 6 – 10 кВ остается нерешенной. Целью данной работы является разработка оптимальной конструкции автоматического пункта секционирования, использование которого позволит повысить эффективность процессов передачи и распределения электрической энергии путем совершенствования системы секционирования электрических сетей напряжением 6 – 10 кВ в условиях существующих линий электроснабжения и тем самым повысить надежность электроснабжения и сократить время перерывов в электроснабжении потребителей. В данной статье приводится описание предложенных вариантов оптимизации конструкции реклоузера для электрических сетей напряжением 6 – 10 кВ.
Ключевые слова: автоматический пункт, надежность, секционирование, конструкция, эффект, цифровизация, электроснабжение, блок управления.
Наиболее эффективным способом повышения надежности электроснабжения в воздушных электрических сетях среднего напряжения является секционирование линии коммутационными аппаратами (разъединителями, управляемыми разъединителями, пунктами секционирования). В существующих схемах построения распределительных сетей чаще всего используется ручной подход к управлению аварийными режимами.
Исследования специалистов свидетельствуют о том, что одним из наиболее эффективных способов повышения надежности электроснабжения в воздушных распределительных сетях является реализация автоматического подхода к управлению аварийными режимами, при котором обеспечивается полная независимость работы пунктов секционирования от внешнего управления. Этот подход также получил название децентрализованного. Каждый отдельный аппарат, являясь интеллектуальным устройством, анализирует режимы работы электрической сети и автоматически производит ее реконфигурацию в аварийных режимах, то есть локализацию места повреждения и восстановление электроснабжения потребителей неповрежденных участков сети [1].
Традиционные пункты секционирования, выполненные на базе ячеек КРУН, имеют в своем составе классические защиты, выполненные на электромеханических или микропроцессорных терминалах реле. Такие защиты весьма затруднительно использовать на магистральных участках сети, особенно в сетях с двухсторонним питанием. К классическим защитам не предъявляются требования о возможности реализации многократных АПВ, не требуются и независимые установки при различных направлениях потока мощности. Минимальная ступень селективности классических микропроцессорных защит составляет 0,3 с, электромеханических – от 0,5 с. Всего этого недостаточно для реализации децентрализованного подхода. Как следствие, большая часть установленных пунктов секционирования чаще всего работает по ручному принципу.
Аппаратом, отвечающим всем требованиям децентрализованного подхода, является вакуумный реклоузер, представляющий собой совокупность вакуумного коммутационного модуля со встроенной системой измерения токов и напряжения и шкафа управления с микропроцессорной системой релейной защиты, и автоматики [2].
Реклоузер выполняет:
– оперативные переключения в распределительной сети (местная и дистанционная реконфигурация);
– автоматическое отключение поврежденного участка;
– автоматическое повторное включение воздушных ЛЭП;
– автоматическое выделение поврежденного участка;
– автоматический ввод резерва;
– автоматический сбор, обработку и передачу информации о параметрах режимов работы сети и состоянии собственных элементов.
Основным элементом реклоузера, его коммутирующим устройством является вакуумный выключатель. Для вакуумных выключателей характерна высокая скорость срабатывания (десятые доли секунды) и возможность автоматического управления в нештатных ситуациях.
Вакуумные выключатели на номинальное напряжение 6 – 10 кВ выпускаются многими предприятиями нашей страны. В настоящее время в реклоузерах чаще всего применяются следующие вакуумные выключатели отечественных производителей:
– ВВ/TEL-10, «Таврида Электрик» (г. Москва);
– ВВР-10, «Росвакуум» (г. Москва);
– ВВМ-СЭЩ-3-10, «Самараэлектрощит» (г. Самара);
– EX-ВВ, «КЭПС» (г. Новосибирск);
– ВВ/AST-10, «Астер Электро» (г. Новосибирск).
Первые четыре позиции в списке занимают вакуумные выключатели внутренней установки, что означает, что они должны быть заключены в корпус, защищающий аппарат от осадков и других нежелательных внешних воздействий. Выключатель ВВ/AST-10 позиционируется как устройство наружной установки, то есть может устанавливаться без защитного кожуха.
В настоящее время бытует мнение, что наилучшими качеством обладают вакуумные выключатели ВВ/TEL «Таврида Электрик». Возможно, так оно и есть, однако, существенных различий в надежности выключателей разных производителей пока не обнаружено, а вот по цене выключатели ВВ/TEL точно являются «лидерами», превосходя цену конкурентов иногда более, чем на 60 тысяч рублей.
Микропроцессорная защита – это устройство управления реклоузером. Чтобы вакуумный выключатель сработал и отключил линию в аварийной ситуации, нужно, чтобы кто-то обнаружил нештатную ситуацию отправил соответствующую команду на отключение. Причем сделать это необходимо за доли секунды, пока аварийная ситуация не привела к необратимым последствиям.
Команду на отключение вакуумного выключателя посылает устройство релейной защиты и автоматики (РЗА). Название "релейная защита" устоялось еще с тех пор, когда управляющими устройствами были обычные электромеханические реле. В настоящее время электромеханические реле повсеместно заменяются микропроцессорными устройствами защиты. Микропроцессорные устройства (микропроцессорные терминалы защиты) по цене сопоставимы с традиционными реле, не уступают им по надежности, но при этом значительно превосходят по функциональности и удобству настройки и обслуживания [3].
Существует четыре основных группы реклоузеров:
– реклоузеры на специализированных датчиках тока и напряжения;
– пункты секционирования на традиционных трансформаторах тока;
– пункты секционирования с функцией учета электроэнергии;
– пункты отключения линии на базе вакуумного выключателя нагрузки.
Все существующие 4 группы пунктов секционирования имеют ряд недостатков, которые не позволяют устанавливать их повсеместно на большинстве воздушных линий.
Для повышения надежности электроснабжения потребителей и электроприемников, автоматизации процессов поиска и локализации повреждений на линии, нужно устройство для электрических сетей напряжением 6 – 10 кВ, способное производить двух – трех кратное автоматическое повторное включение линии при возникновении кратковременного короткого замыкания, автоматизировать устройство путем создания связи его работы с диспетчерским управлением, оптимизировать конструкцию путем включения вакуумного выключателя нагрузки, в замен дорогостоящих вакуумных выключателей, а также создать собственный блок управления, обеспечивающий все требуемые виды защит и автоматики.
Вакуумный выключатель нагрузки с моторным приводом позволит исключить из устройства линейные разъединители, так как сам позволяет наблюдать видимый разрыв и механически производить заземление.
Первым этапом практической реализации устройства стала разработка его структурной схемы. Она изображена на рисунке 1.
Рисунок 1
Структурная схема устройства
Основными составляющими устройства предполагаются: ВПТ – входной преобразователь тока; ВПН – входной преобразователь напряжения; БУ – блок управления; КМ – коммутационный модуль; ТСН – трансформатор собственных нужд; ДП – диспетчерский пункт.
Работа устройства осуществляется следующим образом: входные преобразователи преобразуют фазные токи и напряжения в величины доступные для восприятия блока управления, блок управления на основе полученных мгновенных значений фазных токов и напряжений осуществляет вычисление действующих значений и подает напряжение на привод коммутационного модуля.
Вторым этапом практической реализации устройства стала разработка его принципиальной схемы. Она изображена на рисунке 2.
Следующим этапом практической реализации устройства стала разработка блока управления. 3D-визуализация платы представлена на рисунках 3 и 4.
Комплексная цифровизация путем построения «умной сети» предполагает внедрение вторичного оборудования, обеспечивающего наблюдаемость и автоматическое режимное управление сетями и не предусматривает замену основного оборудования подстанций, реконструкцию линий электропередачи. Разработанное устройство позволит автоматизировать работу распределительных сетей 6 – 10 кВ посредством автоматического повторного включения без особо крупных затрат и с впечатляющим экономическим эффектом.
Рисунок 2
Принципиальная схема подключения устройства к ВЛ
Рисунок 3
3D-визуализация печатной платы (вид со стороны элементов)
Рисунок 4
3D-визуализация печатной платы (вид с оборотной стороны)
Годовой экономический эффект от внедрения одного устройства составляет 20 137,01 р./год [4].
О проекте
О подписке