Читать книгу «Фантомы мозга» онлайн полностью📖 — Сандры Блейксли — MyBook.
image



Медицина полна двусмысленностей; это-то меня всегда в ней и привлекало – стиль Шерлока Холмса импонировал мне с юных лет. Диагностика проблемы пациента – и наука и искусство в равной степени, а значит, требует не только развитых способностей к наблюдению и рассуждению, но и участия всех органов чувств. Я вспоминаю одного профессора, доктора К. В. Тирувенгадама, который учил нас определять болезнь по запаху. Так, безошибочный запах диабетического кетоза похож на сладковатый запах лака для ногтей; брюшной тиф пахнет как свежий хлеб; для скрофулеза характерен застоявшийся пивной дух; запах краснухи напоминает куриные перья; абсцесс легкого источает зловоние; а печеночной недостаточности свойственен запах аммиака. (Современный педиатр смело может добавить к этому перечню аромат виноградного сока, который возникает при инфицировании Pseudomonas у детей, и запах потных ног изовалериановой ацидемии.) Тщательно осмотрите пальцы, говорил нам доктор Тирувенгадам, ибо небольшое изменение угла между ногтевым ложем и подушечкой может указывать на развитие рака легких задолго до появления более зловещих клинических симптомов. Примечательно, что данный признак – утолщение концевых фаланг пальцев – мгновенно исчезает на операционном столе, стоит только хирургу удалить опухоль, но даже сегодня мы понятия не имеем, почему это происходит. Другой мой учитель, профессор неврологии, настаивал на том, чтобы мы диагностировали болезнь Паркинсона с закрытыми глазами – слушая шаги больных (пациенты с этим расстройством характерно шаркают). В наш век высокотехнологичной медицины этот «детективный» аспект клинической практики – умирающее искусство, но оно успело посеять семя в моем сознании. Внимательно наблюдая за поведением пациента, слушая его шаги, прикасаясь к нему и даже нюхая его, врач может прийти к разумному диагнозу и использовать лабораторные тесты, дабы подтвердить то, что и так уже известно.

Наконец, при обследовании и лечении больного долг всякого врача – задать себе вопрос: «Каково быть на месте этого пациента? Что, если бы я был им?» Лично я никогда не переставал восхищаться мужеством и стойкостью многих моих пациентов, не говоря уж о том, что иногда трагедия, как ни парадоксально, не только обогащает их жизнь, но и придает ей новый смысл. По этой причине клинические истории, которые изложены далее, суть истории о триумфе человеческого духа над бедами и невзгодами. Хотя многие из них окрашены печалью, все они проникнуты неиссякаемым оптимизмом. Например, один невролог из Нью-Йорка, которого я наблюдал, в возрасте шестидесяти лет вдруг начал страдать эпилептическими припадками, возникающими в правой височной доле. Разумеется, приступы вызывали беспокойство, но, к его изумлению и восторгу, он – впервые за всю свою жизнь – пристрастился к поэзии и сам начал думать в стихах, выдавая бесконечный поток рифм. Поэзия, признался он, позволила ему будто заново родиться, начать жизнь с чистого листа. Следует ли из этого примера, что все мы – тайные поэты в душе, как утверждают многие гуру и мистики Нового века? Обладает ли каждый из нас нереализованным потенциалом сочинять прекрасные стихотворения и поэмы, запрятанным в дальних уголках нашего правого полушария? Если да, можно ли каким-то образом высвободить такую латентную способность, только без эпилептических припадков?

* * *

Прежде чем мы познакомимся с моими пациентами и попытаемся разгадать кое-какие тайны нервной системы, я хотел бы пригласить вас на небольшую экскурсию по человеческому мозгу. Эти анатомические подробности (обещаю, я постараюсь объяснить их как можно проще) помогут вам лучше понять, почему неврологические пациенты ведут себя именно так, а не иначе.

Говорят, человеческий мозг – самая сложно организованная форма материи во Вселенной. Сегодня это почти клише, однако в нем есть определенная доля истины. Если вы отделите кусочек мозга, скажем, от извилистого наружного слоя – новой коры, или неокортекса, – и взглянете на него под микроскопом, вы увидите, что он состоит из нейронов (нервных клеток) – основных функциональных единиц нервной системы. При рождении типичный мозг, вероятно, содержит более ста миллиардов нейронов, однако с возрастом их число постепенно уменьшается.

Каждый нейрон состоит из тела (сомы) и десятков тысяч крошечных отростков, дендритов, которые получают информацию от других нейронов. Кроме того, у каждого нейрона имеется аксон – длинный отросток, который передает информацию от нервной клетки органам и другим нервным клеткам. Концевые участки аксона называются терминалями и служат для связи с другими нейронами.

Рис. 1.1


Если вы посмотрите на рисунок 1.1, вы заметите, что изображенный на нем нейрон связан с другими нейронами. Место контакта между двумя нейронами называется синапсом. Каждый нейрон образует от тысячи до десяти тысяч синапсов. Синапсы могут быть активными или неактивными, возбуждающими или тормозящими. Кусочек вашего мозга размером с песчинку содержит сто тысяч нейронов, два миллиона аксонов и один миллиард синапсов; и все они «разговаривают» друг с другом. На основании этих цифр было подсчитано, что количество возможных состояний мозга – теоретически возможных комбинаций активности – превышает количество элементарных частиц во Вселенной. Но если все так сложно, как нам разобраться в функциях мозга? Поскольку очевидно, что понимание функций нервной системы невозможно без понимания ее структуры[6], я начну с краткого обзора анатомии головного мозга.

Головной мозг начинается с продолговатого мозга – образования, которое соединяет спинной мозг с головным мозгом и содержит кластеры клеток (так называемые ядра), контролирующие жизненно важные функции, например кровяное давление, сердечный ритм и дыхание. Продолговатый мозг соединяется с варолиевым мостом, волокна которого идут в мозжечок – структуру размером с кулак в задней части мозга, помогающую нам выполнять скоординированные движения. Чуть выше располагаются два огромных полушария – похожие на орех половины мозга. Каждая половина делится на четыре доли – лобную, височную, теменную и затылочную, о которых мы подробнее поговорим в следующих главах (рис. 1.2).


Рис. 1.2

Макроскопическая анатомия человеческого мозга.

(а) Левая часть левого полушария. Обратите внимание на четыре доли: лобную, теменную, височную и затылочную. Лобная часть отделена от теменной центральной (роландовой) бороздой, а височная от теменной – латеральной (сильвиевой) бороздой.

(б) Внутренняя поверхность левого полушария. Мозолистое тело выделено черным цветом, таламус – белым. Мозолистое тело соединяет два полушария.

(в) Большие полушария, вид сверху.[7]


Каждое полушарие контролирует мышцы (например, в руке или ноге) на противоположной стороне тела. Правое полушарие заставляет вашу левую руку махать на прощание, а левое – вашу правую ногу бить по мячу. Две половины мозга связаны пучком нервных волокон под названием мозолистое тело. Если этот пучок перерезать, связь между двумя сторонами будет потеряна; результат – синдром, позволяющий получить кое-какое представление о роли, которую каждая сторона играет в познании. Внешняя часть каждого полушария представлена корой – шестью слоями клеток, образующими извилины и борозды и напоминающими кочан цветной капусты.

В самой середине мозга находятся два таламуса. Считается, что таламус эволюционно более примитивен, чем кора больших полушарий, и выполняет функции «ретранслятора»: вся сенсорная информация, за исключением запаха, проходит через него по пути к внешней мантии. Между таламусом и корой расположены базальные ядра или ганглии (структуры с весьма забавными названиями – например, скорлупа и хвостатое ядро). Наконец, ниже таламуса находится гипоталамус, который, по-видимому, отвечает за регулирование метаболических функций, выработку гормонов и различные базовые импульсы, такие как агрессия, страх и сексуальность.

Хотя эти анатомические факты известны давно, мы до сих пор не имеем четкого представления о том, как именно работает мозг[8]. Многие более старые теории можно отнести к одному из двух воюющих лагерей – модульной теории или холизму. Последние триста лет маятник в основном качался между двумя этими крайностями. Один конец спектра оккупировали сторонники модульного подхода: они полагают, что различные части мозга высокоспециализированы. Так, существует отдельный модуль для языка и речи, отдельный модуль для памяти, отдельный модуль для математических способностей, отдельный модуль для распознавания лиц и, возможно, даже отдельный модуль для выявления лжи. Более того, эти модули, или области, характеризуются существенной автономией. Каждый из них выполняет свою собственную работу, последовательность вычислений или что-то еще, а затем, подобно ведерной бригаде, передает данные в следующий модуль, почти не «разговаривая» с другими участками.

На другом конце спектра мы имеем холизм – теоретический подход, который в значительной степени пересекается с тем, что в наши дни принято называть «коннекционизмом». Представители данной научной школы утверждают, что мозг функционирует как единое целое и что все его части одинаково хороши. В пользу принципа целостности говорит тот факт, что многие участки мозга, особенно коры, могут выполнять самые разные задачи. Все связано со всем остальным, считают холисты, а потому поиск отдельных модулей – пустая трата времени.

Мой собственный опыт наблюдения за больными подсказывает, что эти две точки зрения отнюдь не исключают друг друга. Судя по всему, мозг – это динамическая структура, которая использует оба «режима». Величие человеческого потенциала проявляется только тогда, когда мы принимаем во внимание все возможности, не примыкая к поляризованным лагерям и не спрашивая, локализована данная конкретная функция или не локализована[9]. Как мы увидим далее, гораздо целесообразнее решать каждую проблему по мере ее возникновения, а не зацикливаться на определенной, заранее сформулированной четкой позиции.

На самом деле оба подхода в их крайних формах довольно абсурдны. В качестве аналогии предположим, что вы смотрите сериал «Спасатели Малибу». Где он локализован? В люминофоре на экране телевизора или в танцующих электронах внутри кинескопа? Или в электромагнитных волнах, передаваемых по воздуху? А может, на целлулоидной ленте или на видеопленке в студии, из которой транслируется шоу, или в камере, которая смотрит на актеров?

Большинство людей сразу понимают – вопрос бессмысленный. Тогда, возможно, у вас возникнет соблазн заключить, что сериал вообще не локализован (то есть модуль «Спасатели Малибу» не существует) в некоем конкретном месте, а пронизывает всю Вселенную, но это тоже абсурдно. Мы знаем, что он не локализован на Луне, или в моей кошке, или в стуле, на котором я сижу (хотя некоторые электромагнитные волны могут проникать в эти места). Очевидно, что люминофор, кинескоп, электромагнитные волны и видеопленка играют гораздо большую роль в этом действе, которое мы называем «Спасатели Малибу», чем Луна, стул или чужой кот.

Как только вы понимаете, что такое телевизионная программа на самом деле, вопрос «локализована или не локализована?» отступает на задний план, и вас начинает мучить другая проблема: «Как это работает?» Разумеется, изучение электронно-лучевой трубки и электронной пушки в конечном итоге даст вам кое-какие подсказки относительно того, как работает телевизор и почему время от времени на экране появляются спасатели из Малибу. Со стулом, на котором вы сидите, такой номер не пройдет: сколько бы вы на него ни смотрели, принципы телевизионной трансляции останутся тайной за семью печатями. Выходит, локализация не такая уж плохая площадка для старта – если, конечно, мы не ждем, что она содержит все ответы.

То же справедливо и в отношении многих обсуждаемых в последнее время вопросов о функционировании мозга. Речь локализована? А цветное зрение? А смех? Стоит нам лучше понять эти функции, как вопрос «где?» становится менее важным, чем вопрос «как?». На сегодняшний день собрано множество эмпирических данных, которые подтверждают существование специализированных участков или модулей мозга, опосредующих различные умственные способности. Тем не менее, чтобы разгадать главный секрет мозга, нужно не только выявить структуры и функции каждого модуля, но и установить, как они взаимодействуют друг с другом, генерируя весь спектр способностей, которые мы называем человеческой природой.

Вот тут-то в игру и вступают пациенты с необычными неврологическими нарушениями. Подобно аномальному поведению собаки, которая не лаяла во время убийства и тем самым навела Шерлока Холмса на след истинного преступника, любопытное поведение таких больных может подсказать нам, как различные части мозга создают внутреннюю репрезентацию внешнего мира и генерируют иллюзию «Я», сохраняющуюся в пространстве и времени.

* * *

Дабы в полной мере прочувствовать суть такого подхода к науке, рассмотрим несколько колоритных случаев – и соответствующие выводы, – которые описаны в старой неврологической литературе.

Более пятидесяти лет назад в клинику всемирно известного невролога Курта Гольдштейна вошла женщина среднего возраста. Она казалась совершенно нормальной и не испытывала проблем с речью. На самом деле с ней все было в порядке, за исключением одной-единственной странной жалобы – время от времени ее левая рука хватала ее за горло и пыталась задушить. В таких случаях женщина брала левую руку правой и, опустив ее, прижимала к боку – нечто подобное проделывал актер Питер Селлерс в образе доктора Стрейнджлава. Иногда ей даже приходилось садиться на мятежную конечность, так настойчиво та пыталась лишить ее жизни.[10]

Неудивительно, что лечащий врач женщины решил, что она психически нездорова, и направил ее сразу к нескольким психиатрам. Те ничем не смогли ей помочь и посоветовали обратиться к доктору Гольдштейну – великолепному диагносту, который брался за самые сложные случаи. Осмотрев больную, Гольдштейн констатировал: его новая пациентка не страдает ни психозом, ни истерией, ни каким-либо иным психическим расстройством. Отсутствовали и признаки выраженных неврологических дефицитов, таких как паралич или гиперрефлексия. Впрочем, скоро он нашел объяснение ее странному поведению. Как у вас и у меня, у этой женщины было два больших полушария, каждое из которых специализировалось на разных умственных способностях и контролировало движения на противоположной стороне тела. Как известно, полушария соединены сплетением нервных волокон под названием мозолистое тело, которое позволяет двум сторонам «переговариваться» и действовать «в согласии друг с другом». Однако в отличие от большинства из нас, правое полушарие этой женщины (которое управляло ее левой рукой) явно питало латентные склонности к суициду – другими словами, оно испытывало непреодолимое желание себя убить. Вероятно, раньше эти побуждения сдерживались «тормозами» – ингибирующими сигналами, поступающими через мозолистое тело из более рационального левого полушария. Если в результате инсульта, предположил Гольдштейн, мозолистое тело оказалось повреждено, эти «тормоза» исчезли. В итоге правая сторона мозга и кровожадная левая рука обрели свободу и периодически пытались задушить свою хозяйку.

Это объяснение не так надуманно, как кажется: некоторое время назад ученые установили, что правое полушарие более склонно к эмоциональной неустойчивости, чем левое. Больные, перенесшие инсульт на левой стороне мозга, часто тревожны, подвержены депрессии и в целом пессимистически смотрят на перспективы реабилитации. Причина, по-видимому, заключается в том, что при поражении левого мозга правый берет управление на себя и начинает паниковать по любому поводу. Люди с поражениями правого полушария, напротив, блаженно равнодушны к своему состоянию и прочим невзгодам. Левое полушарие просто не умеет сильно расстраиваться. (Подробнее об этом см. в главе 7.)