Цитаты из книги «Фейнмановские лекции по физике. Современная наука о природе» Ричарда Филлипса Фейнмана📚 — лучшие афоризмы, высказывания и крылатые фразы — MyBook. Страница 9
image
Правильный закон таков: если скорость предмета меньше 100 км/сек, масса с точностью до одной
12 мая 2020

Поделиться

Существует еще одна интересная задача, при решении которой не обойтись без понятия вероятности. Это проблема «случайных блужданий». В простейшем варианте эта задача выглядит следующим образом. Вообразите себе игру, в которой игрок, начиная от точки х = 0, за каждый ход может продвинуться либо вперед (до точки х), либо назад (до точки – х), причем решение о том, куда ему идти, принимается совершенно случайно, ну, например, с помощью подбрасывания монеты. Как описать результат такого движения? В более общей форме эта задача описывает движение атомов (или других частиц) в газе – так называемое броуновское движение – или образование ошибки при измерениях. Вы увидите, насколько проблема «случайных блужданий» тесно связана с описанным выше опытом с подбрасыванием монеты.
16 апреля 2020

Поделиться

Использованный здесь метод можно применять и в более общей ситуации, где в каждом единичном испытании возможны только два исхода, которые давайте обозначим через В (выигрыш) и П (проигрыш). Вообще говоря, вероятности В и П в каждом отдельном испытании могут быть разными. Пусть р, например, будет вероятностью результата В. Тогда q (вероятность результата П) должна быть равна (1 – p). В серии из n испытаний вероятность того, что результат В получится k раз, равна Эта функция вероятностей называется биномиальным законом распределения вероятности
16 апреля 2020

Поделиться

помощью выражения (6.1) подсчитать вероятность P (k, n) выпадения k раз «орла» в серии из n испытаний. Полное число всех возможностей будет 2n (поскольку в каждом испытании возможны два исхода), а число равновероятных комбинаций, в которых выпадет «орел», будет, так что Поскольку P (k, n) – доля тех серий испытаний, в которых выпадение «орла» ожидается k раз, то из ста серий k выпадений «орла» ожидается 100 P
16 апреля 2020

Поделиться

Может быть, в действительности более правдоподобно, что за 30 испытаний получается 16 выпадений «орла»? Минуточку терпения! Если мы сложим вместе результаты всех серий, то общее число испытаний будет 3000, а общее число выпадений «орла» в этих испытаниях достигает 1492, так что доля испытаний с выпадением «орла» в результате будет 0,497. Это очень близко к половине, но все же несколько меньше. Нет, мы все-таки не можем предполагать, что вероятность выпадения «орла» больше, чем 0,5! Тот факт, что в отдельных испытаниях «орел» чаще выпадал 16 раз, чем 15, является просто случайным отклонением, или флуктуацией. Мы же по-прежнему ожидаем, что наиболее правдоподобным числом выпадений должно быть 15. Можно спросить: а какова вероятность того, что в серии из 30 испытаний «орел» выпадет 15 раз или 16, или какое-то другое число раз? Мы говорим, что вероятность выпадения «орла» в серии из одного испытания равна 0,5; соответственно вероятность невыпадения тоже равна 0,5. В серии из двух испытаний возможны четыре исхода: ОО, OP, PO, PP. Так как каждый из них равновероятен, то можно заключить: а) вероятность двух выпадений «орла» равна 1/4; б) вероятность одного выпадения «орла» равна 2/4; в) вероятность невыпадения «орла» равна 1/2. Это происходит потому, что существуют две возможности из четырех равных получить одно выпадение «орла» и только одна возможность получить два выпадения или не получить ни одного. Рассмотрим теперь серию из трех испытаний. Третье испытание с равной вероятностью может дать либо «орел», либо «решку», поэтому существует только один способ получения трех выпадений «орла»: мы должны получить два выпадения «орла» в двух первых испытаниях и затем выпадение «орла» в последнем. Однако получить два выпадения «орла» можно уже тремя способами: после двух выпадений «орла» может выпасть «решка» и еще два способа – после одного выпадения «орла» в первых двух испытаниях выпадет «орел» в третьем. Так что число равновероятных способов получить 3, 2, 1 и 0 выпадений «орла» будет соответственно равно 1, 3, 3 и 1; полное же число всех возможных способов равно 8. Таким образом, получаются следующие вероятности: 1/8, 3/8, 3/8, 1/8. Эти результаты удобно записать в виде диаграммы (фиг. 6.3). Фиг. 6.3. Диаграмма, иллюстрирующая число различных возможностей получения 0, 1, 2 и 3 выпадений «орла» в серии из трех испытаний. Ясно, что эту диаграмму можно продолжить, если мы интересуемся еще бóльшим числом испытаний. На фиг. 6.4 приведена аналогичная диаграмма для шести испытаний. Фиг. 6.4. Диаграмма, подобная изображенной на фиг. 6.3, для серии из шести испытаний. Число «способов», соответствующих каждой точке диаграммы, – это просто число различных «путей» (т. е., попросту говоря, последовательность выпадения «орла» и «решки»), которыми можно прийти в эту точку из начальной, не возвращаясь при этом назад, а высота этой точки дает общее число выпадений «орла». Этот набор чисел известен под названием треугольника Паскаля, а сами числа называются биномиальными коэффициентами, поскольку они появляются при разложении выражения (a + b)n. Обычно эти числа на нашей диаграмме обозначаются символом, или (число сочетаний из n по k), где n – полное число испытаний, а k – число выпадений «орла»
16 апреля 2020

Поделиться

Если мы «обстреливаем» быстрыми частицами тонкую пластинку вещества, то имеется некая вероятность, что они пройдут через нее, не задев ядер, однако с некоторой вероятностью они могут попасть в ядро. (Ведь ядра столь малы, что мы не можем видеть их, мы, следовательно, не можем прицелиться, и «стрельба» ведется вслепую.) Если в нашей пластинке имеется n атомов и ядро каждого из них затеняет площадь σ, то полная площадь, затененная ядрами, будет равна πσ. При большом числе N случайных выстрелов мы ожидаем, что число попаданий NC будет так относиться к полному числу выстрелов, как затененная ядрами площадь относится к полной площади пластинки:
16 апреля 2020

Поделиться

Можно рассуждать следующим образом: если наиболее вероятное число выпадений «орла» будет NО, а полное число подбрасываний N, то наиболее вероятное число выпадений «решек» равно N – NО. (Ведь предполагается, что при каждом подбрасывании должны выпасть только либо «орел», либо «решка» и ничего другого!) Но если монета «честная», то нет основания думать, что число выпадений «орла», например, должно быть больше, чем выпадений «решки»? Так что до тех пор, пока у нас нет оснований сомневаться в честности подбрасывающего, мы должны считать, что NР = NО, а следовательно, NР = NО = N/2, или Р (орел) = P (решка) = 0,5.
16 апреля 2020

Поделиться

Под вероятностью данного частного результата наблюдения понимается ожидаемая нами наиболее правдоподобная доля исходов с данным результатом при некотором числе повторений наблюдения. Вообразите себе повторяющееся N раз наблюдение, например подбрасывание вверх монеты. Если NА – наша оценка наиболее правдоподобного числа выпадений с результатом А, например выпадений «орла», то под вероятностью Р(А) результата А мы понимаем отношение P (A) = NA / N.
16 апреля 2020

Поделиться

Под вероятностью мы понимаем что-то вроде предположения или догадки. Но почему и когда мы гадаем? Это делается тогда, когда мы хотим вынести какое-то заключение или вывод, но не имеем достаточно информации или знаний, чтобы сделать вполне определенное заключение. Вот и приходится гадать: может быть, так, а может быть, и не так, но больше похоже на то, что именно так.
16 апреля 2020

Поделиться

Для определения ядерных размеров применяются уже совершенно другие методы: измеряется видимая площадь σ, или так называемое эффективное поперечное сечение. Если же мы хотим определить радиус, то пользуемся формулой σ = πr2, поскольку ядра можно приближенно рассматривать как сферические.
16 апреля 2020

Поделиться

1
...
...
19