Наука балканизирована. Идея разделения академических исследователей на племена восходит к Древней Греции, где жили Сократ (ок. 469–399 гг. до н. э.), его ученик Платон (ок. 428–347 гг. до н. э.) и, в свою очередь, ученик Платона Аристотель (384–322 гг. до н. э.)[23]. Однако через несколько десятилетий Тимон из Флиунта (ок. 320–230 гг. до н. э.) жаловался на ссоры «книжных монастырей» в Александрийском музее. К XVI в. Фрэнсис Бэкон (1561–1626) и другие философы оплакивали раскол человеческого знания.
К середине XIX в. дисциплинарные границы укоренились, каждая обладала своими обычаями, языком, потоками финансирования, учреждениями и практикой. В «Виртуальный ты» мы намерены показать, что сегодняшние исследования – больше, чем просто набор разрозненных усилий. Это грандиозная и взаимодополняющая мозаика данных, моделей, механизмов и технологий. Проступает общая картина того, как работает человеческое тело.
Поскольку не существует единственно верного восприятия человеческого тела, важна каждая точка зрения из каждой дисциплины. Они дополняют друг друга, и, если последовательно объединять их, могут возникнуть новые замечательные идеи. Если мы посмотрим, например, на великую революцию в молекулярной биологии, произошедшую в 1950-х гг., когда физики и химики занялись биологией, а биологи использовали методы, разработанные физиками, то увидим, что этот жизненно важный атомный взгляд на белки, ферменты и другие молекулы живых существ прекрасно дополняет существующие представления о наследственности и эволюции, создавая мощную унификацию знаний, известную как совпадение индуктивных обобщений.
Простая идея, лежащая в основе этой книги, заключается в том, что конвергенция многих отраслей науки – данных о пациентах, теории, алгоритмов, искусственного интеллекта и мощных компьютеров – ведет медицину в новом направлении, количественном и прогнозирующем. Мы покажем, как математика может охватить необычайный спектр процессов, происходящих в живых существах, взвесим разработки в области аппаратного и программного обеспечения, а затем покажем, как человеческое тело можно изобразить in silico, держа в руках цифровое зеркало, отражающее наше возможное будущее.
Эта история основана на междисциплинарных идеях, которые мы изложили в наших предыдущих книгах The Arrow of Time[24] и Frontiers of Complexity[25]. В первой мы обсуждали, как решить глубокую проблему, лежащую в основе науки: время представляется по-разному во многих теориях и масштабах, от микроскопического до макроскопического. В последней мы показали, как сложность математики, физики, биологии, химии и даже социальных наук меняет не только наше представление о Вселенной, но и сами предположения, лежащие в основе традиционной науки, и насколько важны компьютеры, если нам предстоит изучить и понять эту сложность. Нигде это не является более актуальным, чем в попытках создать виртуального человека. В «Виртуальный ты» мы объединяем эти идеи в широкий спектр исследований, как исторических, так и современных.
Это первый отчет глобальной кампании по созданию виртуального человека, ориентированный на широкого читателя. За последние два десятилетия сотни миллионов долларов были потрачены на работу в рамках таких инициатив, как международный проект «Физиом»[26], «Цифровой двойник онкологического пациента» в США[27], европейский «Виртуальный физиологический человек»[28], проект «Человеческий мозг»[29] и еще один общеевропейский проект, возглавляемый Университетским колледжем Лондона, в который мы оба вносим свой вклад, – «Вычислительная биомедицина», или сокращенно CompBioMed.
Все объединяет одна цель. Как было заявлено на одном из семинаров, состоявшемся в Токио: «Пришло время начать грандиозный проект. В течение следующих 30 лет будет создана всеобъемлющая, основанная на молекулах, многомасштабная вычислительная модель человека («виртуальный человек»), способная с разумной степенью точности моделировать и прогнозировать последствия большинства отклонений, имеющих отношение к здравоохранению»[30]. Видение было обнародовано более десяти лет назад – в феврале 2008 г., – и это будущее быстро приближается.
На следующих страницах мы отправим вас в фантастическое путешествие по телу, его системам органов, клеткам и тканям, а также по деформируемым белковым машинам, которые всем управляют. Мы надеемся убедить вас, что в ближайшие десятилетия виртуальные двойники клеток, органов и популяции виртуальных людей будут формировать здравоохранение. Этот организующий принцип медицины XXI в. впервые позволит врачам предвидеть и предсказывать, что вас ждет, включая эффекты предлагаемых методов лечения. Это резко контрастирует с сегодняшним подходом, при котором врачи, по сути, действуют с оглядкой на то, что случилось с похожими (хотя и неидентичными) пациентами в аналогичных (хотя и неидентичных) обстоятельствах.
В долгосрочной перспективе виртуальные клетки, органы и люди – наряду с популяциями виртуальных людей – помогут превратить нынешнее поколение универсальной медицины в медицину, по-настоящему персонализированную. Ваш цифровой двойник поможет понять, какие формы питания, физических упражнений и образа жизни обеспечат вам самое здоровое будущее. В конечном счете появление цифровых двойников может проложить путь к методам улучшения вашего тела и будущего. Как мы обсудим в заключительной главе, виртуальные люди будут держать зеркало, чтобы отразить лучшую версию вас.
Первые четыре главы посвящены фундаментальным шагам, необходимым для создания цифрового двойника: сбору разнообразных данных о теле (глава первая); разработке теории, чтобы разобраться во всех этих данных (глава вторая), использованию математики, чтобы понять фундаментальные ограничения моделирования, использованию компьютеров, чтобы вдохнуть жизнь в математическое понимание человеческого тела (глава третья); объединению естественного и искусственного интеллекта для интерпретации данных и формирования нашего понимания (глава четвертая).
В главах с пятой по восьмую мы показываем последствия этих шагов и начинаем создавать цифрового двойника – от виртуальных инфекций (глава пятая) до клеток, органов, метаболизма и тел. Попутно, в шестой главе, мы встречаемся с пятым шагом, необходимым для создания виртуального человека. Можем ли мы объединить различные математические модели разных физических процессов, происходящих в разных областях пространства и времени внутри тела? Мы можем, и возможность настраивать виртуальное сердце так, чтобы оно соответствовало сердцу пациента, является одним из выдающихся примеров (глава седьмая), наряду с моделированием тела и его систем органов (глава восьмая). В девятой главе мы обсуждаем «Виртуального тебя 2.0», когда следующее поколение компьютеров преодолеет недостатки нынешнего поколения «классических» цифровых компьютеров.
В последней главе мы рассматриваем множество возможностей, а также этические и моральные проблемы, которые создадут виртуальные люди. Цифровые двойники бросят вызов тому, что мы подразумеваем под такими простыми терминами, как, например, «здоровый». Действительно ли вы здоровы, если ваш цифровой двойник предсказывает, что без лечения или изменения образа жизни вы не проживете свою потенциальную продолжительность жизни? Вы можете чувствовать себя «хорошо», но действительно ли вы здоровы, если моделирование предполагает, что вам суждено провести в доме престарелых на десять лет дольше, чем необходимо? Если виртуальный человек может стать субстратом человеческой мысли, как мы будем относиться к нашей цифровой копии? Наконец, в приложении мы рассматриваем провокационный вопрос, возникающий при использовании компьютеров для моделирования мира: возможно ли воссоздать фундаментальную физику космоса с помощью простых алгоритмов?
Рисунок 3. Виртуальный анатомический близнец. Одна из подробных анатомических моделей высокого разрешения, созданных на основе данных магнитно-резонансной томографии добровольцев (IT’IS
О проекте
О подписке