Norbert Wiener
The Human Use of Human Beings: Cybernetics and Society
© Norbert Wiener, 1950, 1952, 1954
© Renewed by Margaret E. Wiener, 1982
© The Massachusetts Institute of Technology, 1964
© Издание на русском языке AST Publishers, 2019
Памяти моего отца Лео Винера, бывшего профессора славянских языков в Гарвардском университете, моего ближайшего наставника и самого приятного из оппонентов
Начало XX века ознаменовалось не просто рубежом между окончанием одного столетия и началом другого. Еще до того, как человечество совершило политический переход от мирного в целом столетия к недавно пережитому нами полувеку войн, произошло фактическое и полноценное изменение взгляда на мир. По всей видимости, эта перемена проявляется прежде всего в науке, хотя вполне возможно, что явления, оказавшие влияние на науку, самостоятельно и независимо привели к наглядно наблюдаемому ныне разрыву между искусством и литературой XIX века и искусством и литературой века двадцатого.
Ньютоновская физика, которая почти безраздельно господствовала с конца XVII столетия до конца XIX века, описывала Вселенную, где все происходит в точном соответствии законам; по сути, это была компактная, строго организованная Вселенная, где будущее непосредственно и неопровержимо зависело от прошлого в его цельности. Подобную картину мира нельзя ни подтвердить, ни опровергнуть посредством экспериментальных методов; она в значительной степени соотносится с таким представлением о мире, которое признается дополняющим эксперименты, однако в некотором отношении оказывается более универсальным, чем что угодно, подтверждаемое опытным путем. Наши несовершенные эксперименты не в состоянии установить, подлежат ли проверке до последнего знака десятичной дроби те или иные ряды физических законов. Впрочем, из ньютоновской точки зрения следовало, что излагать и формулировать физику надо так, словно она в самом деле подчиняется указанным законам. Сегодня такая точка зрения больше не является доминирующей в физике, и этому перевороту больше всего способствовали Людвиг Больцман в Германии и Дж. Уиллард Гиббс в Соединенных Штатах Америки.
Эти два физика отыскали радикальное применение новой, вдохновляющей идеи. Возможно, использование в физике статистики, что, собственно, и принесло им известность, не было чем-то совершенно новым, поскольку Максвелл и другие ранее уже рассматривали миры, состоящие из очень большого числа частиц, и для таких миров по необходимости предполагалось статистическое исследование. Но Больцман и Гиббс внедрили статистику в физику гораздо более масштабно и цельно, благодаря чему статистический подход приобрел значимость как для систем высокой сложности, так и для простейших систем наподобие индивидуальных частиц в силовом поле.
Статистика есть наука о распределении, а распределение, на которое опирались эти современные ученые, учитывало не большие количества одинаковых частиц, но разнообразные начальные позиции и скорости – исходные условия какой-либо физической системы. Иными словами, в ньютоновской системе одни и те же физические законы применяются к многообразию систем, проистекающему из разнообразия позиций и разнообразия состояний. Новые статистики стали рассматривать эти отношения в новой перспективе. Они ни в коем случае не отвергли принцип, согласно которому системы различаются степенью полноты энергии, но отказались от предположения, будто системы с одинаковой полной энергией возможно четко (и сколько угодно) различать и описывать посредством фиксированных каузальных законов.
Следует отметить, что важные статистические параметры присутствуют уже в трудах Ньютона, пускай XVIII столетие, жившее по Ньютону, эти параметры игнорировало. Никакие физические измерения не являются совершенно точными; то, что у нас найдется сказать о машине или о любой другой динамической системе, в действительности относится не к тому, чего нужно ожидать, когда начальные позиции и состояния заданы с предельной точностью (подобного попросту не бывает), но к тому, чего мы можем ожидать, когда перечисленные условия заданы с достижимой степенью точности. Проще говоря, мы знаем вовсе не начальные условия в их полноте, а лишь кое-что об их распределении. Если выразиться иначе, функциональная часть физики обязана учитывать неопределенность и контингенциальность[1] событий. Заслуга Гиббса состоит в том, что он первый предложил научно обоснованный метод рассмотрения указанной контингенциальности.
Историк науки тщетно будет искать единую линию развития. Исследования Гиббса, прекрасно скроенные, были, так сказать, плохо сшиты, и уже другим досталось завершить начатый им труд. Прозрение, на котором он строил свои исследования, заключалось в том, что в обычных условиях физическая система, продолжающая сохранять специфические черты некоего класса, почти всегда развивается так, что начинает воспроизводить распределение, которое демонстрирует в любой произвольно взятый момент времени во всем классе систем. Иначе говоря, при определенных обстоятельствах система проходит через все распределения позиций и состояний, совместимые с ее энергией, если продолжает действовать достаточно долго.
Впрочем, это последнее допущение не является ни истинным, ни возможным где угодно, помимо элементарных, простейших систем. Тем не менее существует другой путь, ведущий к результатам, которые требовались Гиббсу для подкрепления своей гипотезы. По иронии истории, этот путь весьма тщательно изучался в Париже как раз тогда, когда Гиббс работал в Нью-Хейвене; однако лишь не ранее 1920 года парижские и нью-хейвенские исследования наконец объединились в плодотворном союзе. Полагаю, мне выпала честь помогать рождению первого ребенка этого союза.
Гиббсу приходилось опираться на теории измерений и теории вероятностей, которые использовались уже минимум двадцать пять лет и которые во многом не соответствовали его потребностям. А между тем в то же самое время в Париже Борель и Лебег разрабатывали теорию интеграции, которая, что выяснилось позднее, отлично подходила для воплощения идей Гиббса. Борель был математиком и успел завоевать репутацию в области теорий вероятности; вдобавок он обладал отменным чутьем физика. Он выполнил работу, что легла в основу данной теории измерений, но не сумел достичь той ступени, когда фрагменты рассуждений становятся цельной теорией. Это сделал его ученик Лебег, который был человеком совершенно иного склада. Он не обладал чутьем физика и нисколько не интересовался физикой. Однако Лебег решил поставленную Борелем задачу, хотя и рассматривал решение этой задачи всего лишь как способ исследования рядов Фурье и других разделов чистой математики. Произошел конфликт, когда обоих этих ученых выдвинули кандидатами во Французскую академию наук, и только после бесчисленных взаимных нападок они оба удостоились чести стать академиками. Правда, Борель продолжал подчеркивать важность изысканий Лебега и своих собственных как инструмента для исследований в физике, но, по-моему, именно я в 1920 году первым применил интеграл Лебега к конкретной физической задаче – если быть точным, к задаче броуновского движения частиц.
Это произошло много лет спустя после смерти Гиббса; на протяжении двух десятилетий его гипотезы оставались одной из тех загадок науки, которые плодоносят, даже если кажется, что они никак не должны плодоносить. Многие ученые выдвигали догадки, значительно опережавшие свое время; это в полной мере относится и к области математической физики. Введение Гиббсом вероятности в физику случилось задолго до появления адекватной теории таких вероятностей, которые ему требовались. При всех пробелах в его постулатах я убежден, что именно Гиббсу, а не Альберту Эйнштейну, Вернеру Гейзенбергу или Максу Планку следует воздавать должное за первую великую революцию в физике XX века.
В итоге этой революции физика перестала притязать на изучение того, что происходит всегда; теперь она изучает, скорее, то, что происходит с преобладающей степенью вероятности. Вначале в работах самого Гиббса этот контингенциальный подход опирался на ньютоновское основание, элементы которого, чью вероятность надлежало выявить, трактовались как системы, подчиняющиеся ньютоновским законам. Сама теория Гиббса была по своей сути новой, но варианты, с которыми она была совместима, оставались теми же, какие рассматривал еще Ньютон. В дальнейшем же с физикой произошло следующее: косный ньютоновский базис был отброшен – или хотя бы серьезно модифицирован, а контингенциальность Гиббса превратилась ныне, во всей своей наготе, в полноценную основу современной физики. Конечно, следует признать, что данный предмет еще далеко не исчерпан и что Эйнштейн и, в какой-то мере, Луи де Бройль придерживаются той точки зрения, что строго детерминированный мир является более приемлемым, чем мир контингенциальный; но эти великие ученые ведут арьергардные бои против подавляющих сил молодого поколения.
Отмечу любопытную перемену, суть которой состоит в том, что в вероятностном мире мы больше не имеем дел с величинами и рассуждениями, подразумевающими определенную, реальную Вселенную в целом; вместо этого мы задаем вопросы, ответы на которые можно отыскать, допустив существование большого числа аналогичных вселенных. Следовательно, случай признан не только как математический инструмент исследований в физике, но и как ее неотделимая часть.
Такое признание наличия в мире элемента неполного детерминизма, почти иррациональности, в известной степени равнозначно обнаружению Фрейдом глубоко иррациональной составляющей человеческого поведения и мышления. В современном мире политической и интеллектуальной неразберихи налицо естественное стремление объединять Гиббса, Фрейда и приверженцев нынешней теории вероятности в группу выразителей некой общей тенденции; но я не хотел бы настаивать на этом. Разрыв между образом мышления Гиббса – Лебега и интуитивными, пускай в некотором отношении вроде бы продиктованными логикой допущениями Фрейда слишком велика. Однако в признании фундаментальности роли случая как элемента самой Вселенной эти ученые очень близки друг другу – и близки традиции, восходящей к святому Августину. Ведь этот элемент случайности, эта органическая неполнота вполне сопоставима (причем здесь не приходится прибегать к риторическим преувеличениям) со злом; святой Августин характеризует отрицание добра, то есть зло как несовершенство, в отличие от положительного (и предумышленного) зла манихейцев[2].
Настоящая книга посвящена рассмотрению воздействия точки зрения Гиббса на современную жизнь – с позиции тех непосредственных изменений, которым подверглась нынешняя наука, и с позиции тех изменений, которые косвенным образом повлияли на наше отношение к жизни вообще. Посему следующие главы содержат и технические описания, и философские обсуждения вопросов наподобие того, что мы должны делать и как нам реагировать на новый мир, нам противостоящий.
На этой странице вы можете прочитать онлайн книгу «Кибернетика и общество (сборник)», автора Норберта Винера. Данная книга имеет возрастное ограничение 12+, относится к жанру «Зарубежная публицистика». Произведение затрагивает такие темы, как «научные исследования», «будущее человечества». Книга «Кибернетика и общество (сборник)» была написана в 1982 и издана в 2019 году. Приятного чтения!
О проекте
О подписке