Читать книгу «Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов» онлайн полностью📖 — Николая Дмитриевича Бетенекова — MyBook.





















Аналогично и мягкие основания (P3-, S2-, I-, Br-), способность к поляризуемости у которых высока.

Анализируя константы устойчивости комплексов, можно сделать вывод, что жесткие кислоты образуют наиболее прочные соединения с жесткими основаниями, а мягкие кислоты – с мягкими основаниями. Большое значение имеет и то, каким образом формируется соответствующее соединение, что определяет молекулярный контакт при образовании этого соединения:



Таким образом, можно провести классификацию комплексообразователей и лигандов (табл.1.2).


Таблица 1.2.

Распределение кислот и оснований по Пирсону.

Ln – лантаноиды.

R – органический радикал


Актиноиды – типичные жесткие кислоты, для них выполняется следующая зависимость: М4+ > M3+ > MO22+ > МO2+. Жесткие кислоты, взаимодействуя с жесткими основаниями, образуют соединения, прочность которых подчиняется величине ионного потенциала.

Приведенное высказывание, что жесткие кислоты предпочтительно ассоциируются с жесткими основаниями, а мягкие кислоты – с мягкими основаниями, не означает, что не могут быть получены соединения жесткой кислоты с мягким основанием и наоборот. Например, CH3- является мягким основанием, однако легко можно получить соединение типа Mg(CH3)2. Тем не менее это соединение термодинамически неустойчиво в отношении гидролиза, тогда как Hg(CH3)2 устойчиво к гидролизу. Теория жестких и мягких кислот и оснований оказалась полезной для предсказания наиболее стабильных продуктов реакций, для которых не имеется достаточно точных термодинамических характеристик.

Некоторые молекулы имеют как жесткие, так и мягкие центры. В диметилсульфоксиде



атом кислорода придает жесткие свойства всему соединению, а атом серы – мягкие свойства. Поэтому жесткие кислоты прочно связываются с атомом O, мягкие кислоты – с атомом S. Подобные свойства реализуются для многих органических соединений, которые используются в экстракционных системах.

С помощью теории жестких и мягких кислот и оснований можно предсказать продукты обменной реакции между солями

LiI + AgF ↔ LiF + AgI.

В результате реакции, протекающей в растворе или в твердой фазе, образуются более стабильные соединения между жесткой кислотой и жестким основанием LiF и мягкой кислотой и мягким основанием AgI.

Становится понятным, почему происходит стабилизация металлов с высокой степенью окисления (Th4+, UO22+) жесткими основаниями (F-, OH-, O2-) и наоборот.

Таким образом, все ионы металлов стремятся к образованию координационных соединений, вероятно так же и то, что все молекулы и ионы, имеющие по крайней мере одну свободную пару электронов, стремятся к взаимодействию с ионами металлов с образованием комплексов.

В зависимости от способности к комплексообразованию ионы металлов можно разделить на три группы.

1. Ионы металлов с электронной структурой инертного газа, т.е. щелочные, щелочно-земельные, лантаноиды и актиноиды. Все они образуют комплексы со связями электростатического характера. Ионы этих металлов взаимодействуют с анионами небольшого размера, в особенности F- и с лигандами, содержащими в качестве донорных атомов атомы кислорода. Имеют тенденцию образовывать в водных растворах акво-комплексы и не образуют комплексы с аммиаком, сульфидами и не осаждаются ими. Т.к. связи этих металлов носят прежде всего ионный характер, то устойчивость комплексов тем выше, чем больше электронная плотность на ионе металла (ионный потенциал).

2. Ионы переходных металлов с d10 или d8 электронной конфигурацией: Cu (I), Ag (I), Au (I), Hg (II), Pt (II), Pd (II). Легко деформирующиеся ионы этих металлов склонны к образованию ковалентных связей. Они образуют очень устойчивые комплексы, для образования которых, прежде всего, важна электроотрицательность лиганда. Связи тем прочнее, чем ниже электроотрицательность донорного атома лиганда. Устойчивы комплексы с лигандами, содержащими в качестве донорных атомов S (II), As (III), P (III). Наименее прочные комплексы образуют с F-.

3. Ионы переходных металлов с частично заполненными d-орбиталями. В зависимости от числа d-электронов свойства этих ионов в большей или меньшей степени напоминают свойства ионов предыдущих групп. Устойчивость комплексов ионов этой группы зависит от z и r и от стабилизации, обусловленной расщеплением d-орбиталей. Устойчивость комплексов с однотипными лигандами обычно возрастает с увеличением степени окисления иона металла. Гексацианоферрат (III) более устойчив, чем аналогичный по строению гексацианоферрат (II). Устойчивость комплексов с азот и кислород содержащими лигандами изменяется в ряду: Mn < Fe < Co < Ni < Cu > Zn. От Mn к Zn уменьшается ионный радиус и от Fe к Cu повышается энергия стабилизации кристаллического поля. В случае Zn d-орбитали полностью заполнены, так что при образовании комплексов они не стабилизируются. Именно по этому порядок последовательности изменяется после Cu.

Если реакцию комплексообразования рассматривать как реакцию кислот и оснований Льюиса, то по Пирсону ионы металлов 1 группы представляют собой жесткие кислоты, характеризующиеся низкой поляризуемостью и образующие устойчивые комплексные соединения с жесткими основаниями. Ионы второй группы – мягкие кислоты, образующие устойчивые комплексные соединения с мягкими основаниями. Свойства ионов металлов третьей группы занимают промежуточное положение между свойствами ионов металлов 1 и 2 групп.

Устойчивость комплексов, прежде всего, определяется природой донорного атома лиганда. В роли донорных атомов лигандов могут выступать следующие элементы, расположенные в последовательности повышения электроотрицательности:

As, P < C, Se, S, I < Br < N, Cl < O <F.

Ионы металлов 1 группы (жесткие кислоты по Пирсону) предпочтительно взаимодействуют с донорными атомами правой части ряда, а ионы металла 2 группы (мягкие кислоты по Пирсону) – с донорными атомами левой части ряда.

Наиболее устойчивые комплексные соединения образуются с хелатообразующими лигандами.

Внутрикомплексные соединения

Катионы металлов имеют несколько вакантных орбиталей для образования связи с лигандами, например, Zn имеет 4 таких орбитали. Однако, такие лиганды, как хлорид, бромид, цианид, аммиак могут занимать только одно координационное место. Каждый и этих лигандов отдает одну неподеленную пару электронов центральному атому. Такие лиганды называются монодентатными (dentatus – зубчатый). Следовательно, количество лигандов будет соответствовать координационному числу.

Существуют лиганды, которые называются полидентатными, которые могут предоставить две или более электронных пар центральному атому для образования комплекса. Комплекс, состоящий из центрального атома и одного или нескольких полидентатных лигандов, называется хелатным соединением или хелатом. В некотором смысле две или более электродонорных групп каждого лиганда действуют как клешни, захватывающие центральный атом при образовании связи с ним. Таким образом, полифункциональные молекулы или ионы могут присоединяться к центральному атому металла более, чем одним атомом группы. Термин «хелат» первоначально использовали для обозначения бидентатного характера группы, но впоследствии он был перенесен на все полидентатаные лиганды, и стал применяться, как для названия хелатной группы, так и для комплекса в целом.

Примеры лигандов различной дентатности.

1. Монодентатные лиганды: H2O, NH3, Cl-, CN-

2. Бидентатные лиганды: SO42-, CO32-, C2O42-, NH2 – C2H4 – NH2 (этилендиамин).

3. Тридентатные лиганды: диацетоамин

и далее вплоть до октадентатных.

Для бидентатных лигандов типа SO42-, CO32-, C2O42- возможно образование равноценных связей с образованием циклов. Причем связи в этом случае пространственно и энергетически симметричны.

Другой большой класс соединений в которых образуются в частности четырехчленные циклы составляют мостиковые комплексы. В этом случае донорный атом связывает два иона металла и его называют мостиковой группой:


где X ≡ OH-, NH2-, Cl-.


Среди факторов, которые влияют на устойчивость комплексов, необходимо отметить следующие:

1. дентатность лиганда: комплексы с полидентатными лигандами более устойчивы, чем с монодентатными;

2. размер хелатного цикла: наибольшей устойчивостью обладают пяти– и шестичленные циклы;

3. пространственные факторы;

4. резонансные эффекты.

Количественную оценку образующихся комплексных соединений можно сделать сравнивая их константы устойчивости. Рассмотрим устойчивость комплексных соединений меди с лигандами различной дентатности, включающие в состав аминные группы:



Увеличение устойчивости комплекса с увеличением дентатности лиганда называют хелатным эффектом ХЭ:

(1.15)

Рассмотрим образование комплексов меди с аммиаком и этилендиамином (NH2C2H4NH2, введем обозначение en):



[Cu(H2O)4]2+ + 4NH3 ↔ [Cu(NH3)4]2+ + 4H2O(1)

[Cu(H2O)4]2+ + 2en ↔ [Cu(en)2]2+ + 4H2O(2)

Устойчивость комплексного соединения симбатна количеству образующихся циклов. Играет роль энергетика и пространственная организация связи.

Энергия Гиббса .

Теплота образования ΔH практически одинакова при образовании связи, как для аммиака, так и для этилендиамина, т.к. в обоих случаях образуется связь через азот. Поэтому энтальпийная составляющая отличается незначительно. Следовательно, дело в энтропийном факторе, который характеризуется изменением числа степеней свободы системы:



Таким образом, во второй реакции наблюдается увеличение числа частиц в системе, рост энтропии, что приводит к росту устойчивости данного соединения и выражается в конечном счете хелатным эффектом.

Более того, существует выигрыш в кинетике процесса. Рассмотрим две реакции с участием в качестве лигандов аммиака и этилендиамина.

M + 2NH3M(NH3)2(1)

M + enM(en)(2)


Если рассматривать механизм, учитывая ступенчатое комплексообразование, то образование соединений по обеим реакциям происходит в две стадии:



Таким образом, одним из преимуществ применения хелатных соединений является высокая кинетика по сравнению с образованием комплексных соединений с монодентатными лигандами.

Наиболее часто и широко применяются хелатные соединения, сочетающие функциональные группы карбоновых кислот с аминогруппами, – комплексоны. Наиболее известен из них комплексон III (трилон Б), представляющий собой двунатриевую соль этилендиаминтетрауксусной кислоты:



Чрезвычайно высокая устойчивость комплексных соединений с комплексоном III объясняется тем, что при образовании комплекса возможно образование пяти пятичленных циклов (4 цикла через карбоновые группы и 1 цикл через атомы азота). Комплексон III широко используется в аналитической химии и технологии. Практически каждый катион металла образует комплекс с комплексоном III в мольном соотношении 1:1.


Комплексы различных металлов характеризуются различным значением констант устойчивости, которые увеличиваются с увеличением заряда катиона, например:



Ионы, образующие более устойчивые соединения могут существовать в более кислой среде.

Возможность образования комплексов в присутствии различных лигандов определяется соотношением констант устойчивости соответствующих комплексных соединений. В зависимости от скорости обмена лигандами, а иногда и центральными ионами, различают инертные и лабильные комплексы. Лабильность комплексов отнюдь не означает, что эти комплексы не устойчивы, т.к. лабильность – понятие кинетическое, а устойчивость – понятие термодинамическое.

Новый комплекс может образоваться в результате замены одного или нескольких лигандов. Эти реакции относятся к реакциям диссоциации или замещения.

В реакциях диссоциативного типа первой, медленной стадией является мономолекулярная диссоциация, за которой следует быстрая стадия присоединения нового лиганда.

ML6 → ML5 + L

ML5 + Y → ML5Y(1.16)

В реакциях, которые проходят по механизму замещения, скорость определяющей является бимолекулярная реакция присоединения лиганда, за которой следует быстрая диссоциация образовавшегося интермедиата:

(1.17)

Механизм замещения чаще имеет место при взаимодействии комплексов металлов с незаполненными d-орбиталями, координационное число которых благодаря этому может возрастать.

Можно выделить следующие общие положения о реакционной способности комплексов [3]:

1. комплексы переходных металлов, как правило, более инертны, чем аналогичные комплексы других металлов. Например, комплекс Ni(II) с ЭДТА более инертен, чем соответствующий комплекс Ca(II);

2. наиболее инертные комплексы образуют переходные металлы с электронной конфигурацией d3, d8, а также d5 и d6. Например, гексароданидохромат (III), тетрахлорплатинат (II), гексацианоферрат (III) и гексацианоферрат (II);

3. инертность изоэлектронных комплексов переходных металлов возрастает с увеличением номера периода. Например, инертность комплексов 1, 10 – фенантролина повышается в следующем ряду центральных ионов:



4. как правило, комплексы с большим координационным числом более инертны. Например, гексацианоникелат (II) более инертен, чем тетрацианоникелат (II);

5. хелаты металлов более инертны, чем соответствующие комплексы, образованные монодентатными лигандами;

6. нейтральные незаряженные комплексы обычно реагируют медленнее, чем комплексные ионы;

7. полиядерные комплексы, как правило, гораздо более инертны, чем соответствующие моноядерные комплексы;

8. реакции замещения центрального иона в хелатах обычно идут медленно: M + NL → ML + N .

Вопросы, касающиеся процессов комплексообразования чрезвычайно сложны. Надо иметь в виду, что комплексные соединения могут образовываться не только в растворе, и с точки зрения закономерностей образования комплексных соединений можно объяснить многие процессы межфазного распределения, реализуемые в сорбционных и экстракционных системах, которые могут быть интерпретированы как процессы гетерополярного комплексообразования, хотя математический аппарат описания и терминология могут различаться.