Читать книгу «Современная теоретическая физика это лженаука. Новое представление физической реальности» онлайн полностью📖 — Мурата Гайсина — MyBook.
image

Решение проблемы

А как же обстоит дело с пониманием природы континуума в современной математике? Рассмотрим на примере решения математической проблемы континуума, заданной в категории актуальной бесконечности. Натуральный ряд в современной математике определяется как множество всех натуральных чисел, что напрямую противоречит природе натурального ряда. Натуральный ряд является примером потенциально бесконечного множества по определению. Беспредельно возрастающий ряд натуральных чисел, сколько бы его не увеличивали, остается конечной величиной. Однако в категории потенциальной бесконечности мы не имеем права говорить о Натуральном ряде как о совокупности всех натуральных чисел или как о бесконечном счетном множестве.

Далее разберём, что такое мощность всех действительных чисел, так называемая континуальная мощность. Континуум в категории актуальной бесконечности определяется как бесконечное множество всех действительных чисел, представленных в виде числовой прямой. Рассмотрим эту числовую прямую с учетом принципа непрерывности. Согласно этому принципу числовая прямая не может быть представлена в виде актуального бесконечного множества, поэтому аналогом множества мощности континуума будет понятие возможности неограниченного деления числовой прямой в выбранной системе исчисления. Это понятие определено в категории потенциальной бесконечности.

Итак, понятие натурального ряда и понятие неограниченного деления числовой прямой в категории потенциальной бесконечности преобразуются в одно понятие – понятие числа. Возможность неограниченного счета с возможностью неограниченного деления в выбранной системе исчисления для определения численных значений объектов математики сколь угодно больших со сколь угодной точностью есть определение числа в категории потенциальной бесконечности.

Отсюда видим, что вопрос о существование промежуточного множества, определенного в категории актуальной бесконечности, в категории потенциальной бесконечности теряет смысл. Однако возникает вопрос: почему трансцендентные и иррациональные числа, определенные в категории актуальной бесконечности, в категории потенциальной бесконечности не имеют места? Действительно, в категории потенциальной бесконечности они являются не числами, а математическими объектами, которые могут быть вычислены с любой точностью, так как в категории потенциальной бесконечности числа по определению конструктивны. Следовательно, число вне числовой конструкции появиться не может.

Заключение. Хотя проблема континуума сформулирована в категории актуальной бесконечности, тем не менее автор нашел решение проблемы только в категории потенциальной бесконечности, так как изначально заданные как актуальные бесконечности на самом деле оказались потенциальными. То есть актуальная бесконечность непредставима и, соответственно, автор пришел к выводу, что теория бесконечных множеств Кантора ошибочна, поскольку его доказательства также основаны на потенциальной бесконечности.

Автор также утверждает, что математика в принципе не может содержать парадоксы, так как является инструментом логики. Однако парадоксы в теории множеств возникли из – за неправомерного использования понятия актуальной бесконечности. На основе предшествующего анализа и решения проблемы континуума наглядно видно, что актуальная бесконечность представима, но не в проявленной форме, то есть как непрерывность.

Во второй главе автор покажет, на каком математическом абсурде держится вся современная теоретическая физика.

Глава 2
Понимание отрицательных величин в математике и материальных объектов с отрицательными свойствами в физике (критика Канта)

В науке свободно апеллируют понятиями, которые скрываются под определением «отрицательные». В математике это отрицательные величины, в физике – отрицательный заряд, позитрон и антиматерия. Автор, используя аналитический метод, попытается разобраться, на каком философском основании в физике появились объекты с отрицательными свойствами.

Отрицание в логике до очевидного понятно – слово «есть» означает присутствие объекта, а слово «нет» – отсутствие объекта. Однако в науке под словом «отрицательный» скрывается понятие определенного свойства некоторых материальных объектов. За разъяснением обратимся к философии. Понятие отрицательных величин в философию ввел Иммануил Кант в статье «Опыт введения в философию понятия отрицательных величин». Кант формулирует тезис по аналогии с пониманием отрицательных величин в математике. Он аргументирует свою позицию следующим рассуждением: математики пользуются понятием этой реальной противоположности для своих величин и, чтобы отметить такие величины, обозначают их знаками «плюс» и «минус». При этом Кант специально указывает, что знак «минус» в этом случае не может быть знаком вычитания, а служит в математике лишь для различения величин, противоположных друг другу. На примере «Капитала» он утверждает, что капиталы равным образом отрицательные долги, как и долги – отрицательные капиталы. Кант на основе этих рассуждений выдвигает положение, которое гласит, что во всех происходящих в мире естественных изменениях сумма положительного не увеличивается и не уменьшается, поскольку она получается в результате того, что согласующиеся между собой полагания складываются, а реально противоположные вычитаются одно из другого. Он делает вывод, что все реальные основания Вселенной, если сложить те, что согласуется между собой, и вычесть те, что противоположны друг другу, дают результат, равный нулю. Мир в целом, по его мнению, сам по себе есть ничто.

Критика понимания отрицательных величин Кантом и критика понимания объектов с отрицательными свойствами в современной физике

Итак, в чем же ошибка Канта в понимании отрицательных величин? Ошибка кроется в том, что нельзя понятия математики переносить в философию без предварительного философского осмысления. Кант изначально полагал, что математика безошибочна в понимании основ. Так ли это?

Проведем философский анализ правильности понимания отрицательных величин в математике. Итак, отрицательные величины в математике обозначаются отрицательными числами. Само понятие отрицательного числа ввели индийцы. Отрицательное число трактовалось ими как коммерческий долг. На языке логики: отложенное на время вычитание денег у должника. Для обозначения нуля в Индии был введен особый знак. Словесное индийское наименование нуля – «шунья», что переводится как «пустое».

Современное понимание отрицательного числа и нуля вступает в конфронтацию с их первичным пониманием. Нуль, с точки зрения изначального понимания, – это пустота. В таком случае неясно, какой счет может идти после пустого. В первичном понимании отрицательного числа его и нет, так как само отрицательное число являлось обычным числом со знаком вычитания. Поэтому в современную математику надо ввести уточнение, что операции сложения и вычитания записываются не только в бинарном виде, но и в унарном. Это явно видно на элементарном примере: 0–1= –1. Нереализованная бинарная операция вычитания переходит в унарный вид записи, то есть в вид записи ожидания. При дальнейшем использовании этого числа в расчетах оно реализуется как обычная операция вычитания. Делаем вывод: нет отрицательных чисел в современном понимании, а есть математика, в которую заложено, что числа при расчетах изначально определены относительно операций сложения и вычитания.

Тогда пример Канта с капиталом будет трактоваться по – другому. Долг не является отрицательным капиталом, а является понятием ожидания появления капитала у должника, который в дальнейшем должен быть вычтен из актива в счет долга.

В результате автор пришел к выводу, что в философии нет собственного понимания «отрицательного». Понятия математики переносились в физику без философского осмысления. Это является основной причиной того, что физика превратилась в клубок абсурдных представлений.

Действительно, автор провел анализ свойств частиц и показал, что заряд электрона по своей природе не отличается от заряда протона. Ошибочное понимание о равенстве и противоположности зарядов протона и электрона произошло из – за отсутствия в физике понимания эффекта экранирования. Автор также выявил, что понятие о позитроне появилось в результате ошибки интерпретации комптон – эффекта, а понятие об антиматерии родилось вследствие нарушения причинно-следственных связей при интерпретации физических опытов.

Заключение. Физики в процессе изучении природы не опираются на философию, и, соответственно, результат плачевный. Перенос понятий математики в физику без глубокого философского осмысления привел к тому, что созданное физиками миропонимание не отражает реальность. То есть большинство объектов изучения физики появились в результате ошибок при интерпретации физических экспериментов. Они являются только фантомами ошибочных теорий, их не существует в реальности.

Перед переходом к основному содержанию книги автор в третьей главе рассуждает о понимании сути времени, так как оно является лакмусовой бумажкой, показывающей уровень разумности научного сообщества и его адекватности в восприятии окружающего мира.

Глава 3
Понятие времени – концептуальная катастрофа 20 века

Автор с критической точки зрения рассмотрит современную концепцию времени и покажет, что она в корне ошибочна, изложит собственное видение развития одного из аспектов физической мысли в XX веке.

Итак, по мнению автора, в теоретической физике произошла концептуальная катастрофа. До начала XX века большинство философов отказывало времени в объективном существовании и обычно рассматривало его как субъективный феномен. Идеальное определение времени дал Антифон: «Время есть мысль или мера, а не сущность». Более лаконичного и точного определения времени, по мнению автора, невозможно представить, но современная наука время представляет сущностью.