Читать книгу «Квантовое превосходство: Революция в вычислениях, которая изменит всё» онлайн полностью📖 — Митио Каку — MyBook.

Революция в экономике

Хотя в краткосрочной перспективе квантовые компьютеры представляют угрозу кибербезопасности государств, в долгосрочной перспективе они имеют громадное практическое значение и способны произвести революцию в мировой экономике, обеспечить более устойчивое будущее и дать старт эпохе квантовой медицины, чтобы лечить ранее неизлечимые болезни.

Существует множество областей, в которых квантовые компьютеры смогут обойти традиционные цифровые машины:

1. Информационно-поисковые системы

В прошлом богатство означало владение нефтью или золотом.

Теперь оно все чаще измеряется информацией. Если прежде компании просто избавлялись от своих финансовых данных, то сейчас эта информация считается более ценной, чем драгоценные металлы. Но просеивание целой кучи данных может оказаться не под силу традиционному цифровому компьютеру. И здесь на сцену выходят квантовые вычислительные машины, которые способны найти иголку в стоге сена. Не исключено, что квантовые компьютеры смогут проанализировать финансы компании и выделить те несколько факторов, которые не позволяют ей развиваться.

И правда, JPMorgan Chase недавно вступил в партнерство с IBM и Honeywell, чтобы иметь возможность анализировать свои данные, а значит, делать более точные прогнозы финансовых рисков и неопределенностей и повышать эффективность своих операций.

2. Оптимизация

После того как квантовые компьютеры использовали поисковые системы, чтобы выделить из массы данных ключевые значения, встает следующий вопрос: как приспособить их для максимизации определенных факторов, таких как прибыль. По меньшей мере крупные корпорации, университеты и правительственные агентства будут применять квантовые компьютеры, чтобы минимизировать свои расходы и максимизировать эффективность и прибыль. К примеру, чистая прибыль некой компании зависит от сотен параметров, таких как заработная плата, продажи, издержки и так далее, и все они быстро меняются во времени. Задача поиска верного сочетания бесчисленных факторов, чтобы максимизировать прибыль, может перегрузить традиционный цифровой компьютер. Тем временем какая-нибудь финансовая фирма захочет использовать квантовые компьютеры для прогнозирования финансовых рынков, на которых ежедневно заключаются сделки на миллиарды долларов. Именно здесь пригодятся квантовые компьютеры, обеспечивающие вычислительные мускулы для оптимизации финансовых результатов.

3. Моделирование

Квантовые компьютеры смогут также решать сложные уравнения, выходящие за рамки возможностей цифровых компьютеров. К примеру, инжиниринговые фирмы могут использовать квантовые компьютеры для расчета аэродинамики самолетов и автомобилей, чтобы найти идеальную форму, которая позволит снизить трение, минимизировать расходы и максимизировать эффективность. Правительства могут использовать квантовые компьютеры для прогнозирования погоды, от определения траектории чудовищного урагана до расчета влияния глобального потепления на экономику и наш образ жизни на десятилетия вперед. Ученые могут использовать квантовые компьютеры для поиска оптимальной конфигурации магнитов в гигантских установках ядерного синтеза, чтобы обуздать мощь водородного синтеза и «поместить солнце в бутылку».

Но, возможно, самую большую пользу квантовые компьютеры принесут в моделировании сотен жизненно важных химических процессов. В идеале хотелось бы иметь возможность предсказывать результат любой химической реакции на атомном уровне вообще без использования химикатов, только при помощи квантовых компьютеров. Эта новая отрасль науки – вычислительная химия – определяет химические свойства не путем эксперимента, а при помощи моделирования их в квантовом компьютере. Когда-нибудь это позволит исключить дорогостоящее и занимающее длительное время тестирование. Вся биология, медицина и химия будут сведены к квантовой механике. Это означает создание «виртуальной лаборатории»: здесь с помощью памяти квантового компьютера можно быстро проверять новые лекарства, средства и методы лечения, обходясь без десятилетий проб и ошибок и медленных, трудоемких лабораторных экспериментов. Вместо того чтобы проводить тысячи сложных, дорогих и продолжительных химических экспериментов, можно будет просто нажать кнопку на квантовом компьютере.

4. Слияние ИИ и квантовых компьютеров

Искусственный интеллект (ИИ) обладает особой способностью учиться на ошибках, что позволяет ему выполнять всё более сложные задания. Он уже доказал свою эффективность в промышленности и медицине. Однако один из недостатков ИИ состоит в том, что громадное количество данных, которое он должен обрабатывать, легко может перегрузить традиционный цифровой компьютер. Но способность просеивать горы данных – одна из сильных сторон квантовых компьютеров. Так что взаимное обогащение ИИ и квантовых компьютеров может значительно расширить их возможности в решении любых задач.

Дальнейшее применение квантовых компьютеров

Квантовые компьютеры способны изменить целые отрасли. Не исключено, к примеру, что именно квантовые компьютеры приведут к тому, что наступит долгожданная солнечная эра. Уже несколько десятилетий футуристы и визионеры предсказывают, что возобновляемая энергия постепенно вытеснит ископаемое топливо и решит проблему парникового эффекта, нагревающего нашу планету. Целые армии таких мыслителей и мечтателей превозносят достоинства возобновляемой энергии.

Но век Солнца все откладывается.

Хотя цены на ветровые турбины и солнечные панели упали, энергия, полученная с их помощью, составляет лишь небольшую долю от мирового производства энергии. Встает вопрос: что случилось?

Любая новая технология в начале своего существования сталкивается с главным препятствием: затратами. После нескольких десятилетий пения осанны солнечной и ветровой энергии рекламщикам и продажникам приходится признать, что она по-прежнему сто́ит в среднем несколько дороже, чем энергия, полученная из ископаемого топлива. Причина ясна. Когда солнце не светит, а ветер не дует, техническое оборудование возобновляемой энергетики попросту простаивает, собирая на себя пыль.

О главном «бутылочном горлышке», затрудняющем приход века Солнца, часто забывают, а это «бутылочное горлышко» не ветряк и не солнечная панель, а аккумуляторная батарея. Мы испорчены тем фактом, что вычислительные мощности растут экспоненциально быстро, и мы подсознательно считаем, что тот же темп развития наблюдается для любой электронной технологии.

Вычислительные мощности резко возросли отчасти потому, что для вытравливания крохотных транзисторов на кремниевом чипе мы можем использовать ультрафиолетовое излучение с меньшей длиной волны. Но аккумуляторная батарея – другое дело. Это довольно грубое устройство, где применяется целый набор экзотических химикатов в сложном взаимодействии. Мощность батарей растет медленно; это трудоемкий процесс, где все делается методом проб и ошибок, а не систематическим уменьшением длины волны УФ-излучения, используемого для травления. Более того, энергия, накопленная в аккумуляторе, составляет крохотную долю от энергии, содержащейся в бензине.

Квантовые компьютеры могли бы это изменить. Не исключено, что они способны смоделировать тысячи возможных химических реакций без необходимости проводить их в лаборатории, чтобы найти наиболее эффективный процесс для супераккумулятора и открыть таким образом дорогу в солнечную эру.

Энергетические и автомобильные компании уже используют квантовые компьютеры первого поколения от IBM в попытках решить проблему аккумуляторных батарей. Они пытаются увеличить емкость и скорость перезарядки для следующего поколения аккумуляторов на основе лития и серы. Но это лишь один способ повлиять на климат. Кроме того, ExxonMobil использует квантовые компьютеры IBM, чтобы создать новые химические вещества для низкоэнергетической переработки и связывания углерода. В частности, сотрудники компании хотят, чтобы квантовые компьютеры могли моделировать разные материалы и определять их химическую природу, например теплоемкость.

Основатель PsiQuantum Джереми О'Брайен подчеркивает, что эта революция не подразумевает создания более быстрых компьютеров. Скорее, она означает решение задач, скажем, сложные химические и биологические реакции, которые никакой традиционный компьютер решить не в состоянии, сколько бы времени мы ему ни дали.

Он утверждает: «Речь идет не о том, чтобы делать что-то быстрее или лучше… речь о том, чтобы в принципе иметь возможность это делать… Эти задачи не по зубам любому традиционному компьютеру, который мы могли бы когда-либо построить… даже если бы взяли каждый атом кремния на планете и превратили его в суперкомпьютер, мы все равно не смогли бы решить… подобные задачи»{11}.

Накормить планету

Еще одним важным аспектом применения квантовых компьютеров может стать обеспечение продовольствием растущего населения Земли. Некоторые бактерии способны без труда извлекать азот из воздуха и преобразовывать его в аммиак; затем аммиак превращают в другие химические вещества, которые становятся удобрением. Именно благодаря этому азотфиксирующему процессу на Земле процветает жизнь, существуют условия для устойчивого воспроизводства растений, которые служат пищей для людей и животных. Когда химики сумели повторить эти реакции в процессе Габера – Боша, началась Зеленая революция. Однако этот процесс требует огромного количества энергии. На него тратится ни много ни мало 2 % общего производства энергии в мире.

Парадоксальная ситуация. Бактерии способны бесплатно делать нечто такое, что в настоящий момент забирает громадную долю мировой энергии.

Вопрос стоит так: могут ли квантовые компьютеры решить задачу эффективного производства удобрений, запустив таким образом Вторую зеленую революцию? Без новой революции в производстве продуктов питания некоторые футуристы предсказывают экологическую катастрофу, поскольку кормить растущее население Земли будет все труднее, что может привести к массовому голоду и продовольственным бунтам по всему миру.

Ученые Microsoft уже предприняли первые попытки при помощи квантовых компьютеров увеличить отдачу от применения удобрений и раскрыть секрет азотфиксации. В конечном итоге квантовые компьютеры способны помочь спасти человеческую цивилизацию от самой себя. Фотосинтез – еще одно чудо природы, при котором солнечный свет и углекислый газ превращаются в кислород и глюкозу, образующие затем основу почти всей жизни животных организмов. Без фотосинтеза пищевая цепочка рвется и жизнь на нашей планете очень быстро исчезла бы.

Ученые десятилетиями пытаются разделить этот процесс на этапы и разгадать все его загадки, проследить все происходящее в нем буквально молекула за молекулой. Но задача превращения света в сахар (глюкозу) – процесс квантово-механический. После многолетних усилий исследователям удалось выяснить, где именно в этом процессе доминируют квантовые эффекты, выводящие его за пределы возможностей цифровых компьютеров. Поэтому даже лучшим нашим химикам до сих пор не удается создать искусственный фотосинтез, который потенциально мог бы оказаться более эффективным, чем природный.

Не исключено, что квантовые компьютеры сумеют помочь нам в создании более эффективного искусственного фотосинтеза или, может быть, совершенно новых способов преобразования энергии солнечного света. Возможно, от этого будут зависеть в будущем наши продовольственные ресурсы.

Рождение квантовой медицины

Итак, квантовые компьютеры способны восстанавливать окружающую среду и растительность. Но, помимо этого, они могли бы лечить больных и умирающих. Квантовые компьютеры в будущем не только одновременно проанализируют эффективность миллионов потенциальных лекарств быстрее любого традиционного компьютера, но и разберутся в природе самой болезни.

Возможно, квантовые компьютеры смогут ответить и на такие вопросы: что заставляет здоровые клетки внезапно перерождаться в раковые и как этот процесс можно остановить? Что вызывает болезнь Альцгеймера? Почему болезнь Паркинсона и боковой амиотрофический склероз неизлечимы? Совсем недавно коронавирус, как известно, дал несколько мутаций, но насколько опасен каждый из получившихся мутантных вирусов и как они будут реагировать на лечение?

Двумя величайшими открытиями в истории медицины можно считать антибиотики и вакцины. Однако новые антибиотики приходится искать в основном методом проб и ошибок, без точного понимания, как они работают на молекулярном уровне, а вакцины лишь стимулируют человеческий организм на производство химических веществ, которые должны атаковать вторгшийся вирус. В обоих случаях конкретные молекулярные механизмы до сих пор не раскрыты, а квантовые компьютеры, возможно, сумеют подсказать нам, как разрабатывать более качественные вакцины и антибиотики.

Если говорить о понимании нашего организма, то первым гигантским шагом в этом направлении стал проект «Геном человека», в ходе работы над которым был составлен список всех 3 млрд пар оснований и 20 000 генов, входящих в ДНК человека. Но это только начало. Проблема в том, что цифровые компьютеры используются в основном для поиска по обширным базам известных генетически кодов, но эти устройства бессильны, если дело доходит до точного объяснения, как ДНК и белки творят свои чудеса внутри организма. Белки представляют собой сложные объекты, часто состоящие из тысяч атомов, которые вполне конкретными, но необъяснимыми способами складываются в маленький шарик, когда творят свое молекулярное волшебство. На самом фундаментальном уровне вся жизнь является квантово-механической и потому недосягаема для цифровых компьютеров.

Но квантовые компьютеры помогут нам перейти к следующему этапу, на котором мы расшифруем эти механизмы на молекулярном уровне. Они расскажут нам, как все это работает, что позволит ученым создавать новые генетические возможности, новые средства и методы борьбы с неизлечимыми ранее болезнями.

К примеру, фармацевтические корпорации, включая ProteinQure, Digital Health 150, Merck и Biogen, уже организуют исследовательские центры, чтобы разобраться в том, как квантовые компьютеры повлияют на анализ лекарств.

Ученые поражены тем, насколько обширный арсенал молекулярных механизмов создала мать-природа, чтобы сделать возможной жизнь на Земле. Но эти механизмы – побочный продукт случая и бессистемного естественного отбора, действовавшего на протяжении миллиардов лет. Вот почему мы до сих пор страдаем от некоторых неизлечимых болезней и процесса старения. Как только мы поймем, как работают эти молекулярные механизмы, мы сможем использовать квантовые компьютеры для их улучшения или создания новых их вариантов.

Например, если говорить о ДНК-геномике, мы можем использовать компьютеры для распознавания таких генов, как BRCA1 и BRCA2, которые с достаточно высокой вероятностью способны привести к раку груди. Но цифровые компьютеры не в состоянии определить точно, как эти дефектные гены вызывают рак. К тому же они бессильны остановить рак, если он уже начал распространяться по телу. Однако квантовые компьютеры, расшифровав молекулярные хитросплетения нашей иммунной системы, сумеют, возможно, создать новые лекарства и способы лечения для борьбы с этими болезнями.

Еще один пример – болезнь Альцгеймера, которая, как считают некоторые, станет «болезнью века» по мере старения населения Земли. При помощи цифровых компьютеров можно показать, что с этой болезнью связаны мутации определенных генов, таких как ApoE4. Но цифровые компьютеры не в силах объяснить, почему это так.

Одна из основных теорий на этот счет состоит в том, что болезнь Альцгеймера вызывается прионами – определенными неправильно свернутыми амилоидными белками в мозге. Когда такая молекула-мутант сталкивается с другой, нормальной молекулой белка, она заставляет эту молекулу тоже свернуться неправильно. Таким образом, болезнь может передаваться при контакте, хотя ни бактерии, ни вирусы при этом не задействуются. Подозревают, что именно прионы-перерожденцы стоят, возможно, за болезнями Альцгеймера и Паркинсона, боковым амиотрофическим склерозом и целым рядом других неизлечимых болезней, поражающих главным образом пожилых людей.

Так что проблема фолдинга (укладки) белка – одна из важнейших неисследованных областей биологии. По сути дела, в ней, возможно, и заключена тайна жизни как таковой. Но как в точности складывается белковая молекула, не под силу разобраться ни одному традиционному компьютеру. Однако квантовые компьютеры смогут открыть для нас новые способы нейтрализации аномальных белков и снабдить новыми методами лечения.

Кроме того, упоминавшееся выше слияние ИИ и квантовых компьютеров, вполне вероятно, окажется будущим медицины. ИИ-программы, такие как AlphaFold, уже смогли составить подробные схемы атомной структуры 350 000 – поразительное количество! – различных типов белков, включая полный набор белков, из которых состоит человеческое тело. Следующий шаг – выяснить при помощи уникальных возможностей квантовых компьютеров, как эти белки творят свое волшебство, и использовать их для создания нового поколения лекарств и методов лечения.

1
...