Читать книгу «Настольная книга диабетика. Как наладить жизнь с непростым диагнозом» онлайн полностью📖 — Михаила Ахманова — MyBook.

Она находится слева за желудком, в верхней части живота и доходит до селезенки; ее положение можно представить, если провести ладонью от левого бока под ребрами к пупку (рис. 1.1). В поджелудочной железе выделяют головку, тело и хвост. В функциональном отношении она состоит из двух независимых частей: основной своей массы, выделяющей пищеварительный (или панкреатический) сок, и так называемых «островков Лангерганса», на которые приходится только 1–2 % от общего объема органа (рис. 1.2). Именно эти островки, открытые в XIX веке немецким физиологом Лангергансом, и выполняют эндокринную функцию, так как в каждом из них содержится от восьмидесяти до двухсот гормонально активных клеток, выделяющих в кровь гормоны. Эти клетки в зависимости от секретируемых ими веществ делятся на четыре типа – альфа-, бета-, дельта- и РР-клетки. В альфа-клетках вырабатывается глюкагон, в бета-клетках – инсулин, в дельта-клетках – гастрин и соматостатин, в РР-клетках – панкреатический полипептид. Большую часть каждого островка в теле и хвосте поджелудочной железы составляют бета-клетки (85 %); на долю альфа-клеток приходится 11 %, на дельта-клетки – 3 % и на РР-клетки – 1 %. Отметим еще одно важное обстоятельство: вместе с инсулином бета-клетки производят так называемый С-пептид («цэ»-пептид), который не обладает свойствами инсулина и интересен нам лишь потому, что его производится ровно столько же, сколько инсулина (то есть на каждую молекулярную цепочку инсулина приходится цепочка С-пептида). Этот факт нам пригодится в дальнейшем.

Рис. 1.1.

Расположение поджелудочной железы относительно других внутренних органов


Каковы же функции гормонов, которые секретируют (то есть производят) островки Лангерганса? Прежде всего отметим, что вещества, вырабатываемые дельта-клетками и РР-клетками, мы рассматривать не будем, так как в контексте данной книги они несущественны. Далее нам придется вспомнить, что используемый в быту термин «сахар» далеко не точен; на самом деле существует множество разновидностей сахаров, различающихся своим химическим строением. Одни из них имеют сложные молекулы, и такие сахара называют «полисахаридами», или сложными сахарами; структура других более проста, и их называют «моносахаридами», или простыми сахарами. Так вот, глюкагон, вырабатываемый альфа-клетками, способствует распаду сложного сахара-гликогена и образованию из него простого сахара-глюкозы. В форме гликогена сахар накапливается «про запас» в некоторых наших органах – в печени и мышцах; глюкоза же – это виноградный сахар, один из простейших сахаров, и в дальнейшем, если не оговаривается особо, мы будем употреблять эти два термина, «глюкоза» и «сахар», как понятия полностью эквивалентные. Именно в форме глюкозы сахар присутствует в нашей крови.


Рис. 1.2.

Поджелудочная железа. Выделены «островки» и кружками белого и черного цветов показаны альфа- и бета-клетки


Разобравшись с глюкагоном и сахарами, рассмотрим функцию инсулина. Однако перед этим полезно вспомнить еще один важный факт, касающийся нашего организма, а именно: наше тело состоит из клеток. Клетки бывают разные по функциям и виду – скажем, шарообразные, овальные, плоские, цилиндрические и т. д. Клетки одинаковой формы и функции образуют определенную ткань человеческого организма – например, головной мозг, стенки кровеносных сосудов, печень или мышцы. Несмотря на разнообразие клеток, между ними есть нечто общее: все они нуждаются в питании. Мы двигаемся, наш организм функционирует непрерывно (даже когда мы спим), а это значит, что мы непрерывно расходуем энергию. Восполнение энергии осуществляется на клеточном уровне: кровь постоянно доставляет клеткам кислород и питательные вещества, одним из которых – и очень важным! – является глюкоза. Если уподобить наши клетки бензиновому мотору, в котором постоянно сгорает топливо (чтобы автомобиль двигался), то глюкоза как раз и является тем самым бензином, питающим наш биологический мотор.

Однако вспомним, что бензин попадает в автомобильный мотор с помощью довольно сложной системы – карбюратора, который впрыскивает порции горючего в камеру сгорания. При отсутствии карбюратора бензин в камеру не попадет, а при неисправном карбюраторе – может, и попадет, но не в том количестве, какое нужно. Точно такие же перипетии происходят с глюкозой, переносимой кровью: ее молекулы сами по себе не способны проникнуть в клетку-мотор. Роль карбюратора – только не механического, а химического – в данном случае играет инсулин.

Эту ситуацию можно описать еще таким образом. Представьте себе клетку как некий замкнутый объем, снабженный некоторым количеством дверей-проходов. Вокруг этого объема сконцентрированы молекулы глюкозы, которые могли бы попасть внутрь, если бы двери были открыты, – однако двери заперты. Молекулы инсулина как раз и являются тем ключом, который отпирает двери клетки перед молекулами глюкозы. Напомним, что инсулин вместе с глюкозой переносится кровью; значит, в обычном случае (то есть у здорового человека) инсулина около клетки вполне достаточно, чтобы отпереть двери перед глюкозой.

Что же происходит в иной ситуации, когда инсулина мало или нет вообще? Опишем эту картину следующим образом: стадия 1 – мы поглощаем пищу; стадия 2 – сложные углеводы, попавшие в составе пищи в желудок и кишечник, перерабатываются в моносахара, в основном – в глюкозу; стадия 3 – глюкоза всасывается через кишечную стенку в кровь и разносится по всему организму, но в клетки без инсулина (за редким исключением) не попадает. В результате, во-первых, клетки начинают голодать, а во-вторых, уровень сахара в крови повышается сверх допустимого – наступает состояние гипергликемии.

Первое обстоятельство приводит к потере веса, затем – к дистрофии, к постепенному угасанию и, собственно говоря, к голодной смерти. Но смерть от голода – затяжной процесс, занимающий несколько недель и в данном случае не грозящий больному; он погибнет раньше от диабетической комы, вызванной вторым обстоятельством – гипергликемией, избытком кетоновых тел. В главе 12 (см. с. 262) этот процесс будет описан подробнее, а пока рассмотрим, к чему приводит аномально высокий уровень сахара в крови.

Чуть выше была сделана оговорка: глюкоза в клетки без инсулина (за редким исключением) не попадает. Этим исключением являются так называемые инсулинонезависимые ткани, которые забирают сахар из крови независимо от наличия инсулина, и если сахара слишком много, то он проникает в эти ткани в избыточном количестве.

Посмотрим, что же это за ткани. Прежде всего головной мозг, нервные окончания и нервные клетки. При повышенном уровне сахара в крови первым ощущением является тяжесть в голове, усталость, быстрая утомляемость, нарушение внимания. В хрусталик глаза глюкоза тоже проникает без помощи инсулина; в результате при повышенном сахаре крови хрусталик мутнеет, и кажется, будто перед глазами дымка. Эритроциты и внутренняя оболочка кровеносных сосудов также относятся к инсулинонезависимым тканям, и когда лишний сахар попадает в клетки, выстилающие кровеносные сосуды, это чревато крайне неприятными осложнениями в будущем (напомним, кстати, что эритроциты – это красные кровяные тельца, переносящие кислород и углекислый газ; в них накапливается сахар, который прочно связывается с гемоглобином).

Кроме описанных выше явлений наблюдается еще одно: сахар начинает выводиться через почки с мочой. Это тревожный сигнал, и он означает, что организм пытается защититься от избытка сахара.

В последующих главах мы рассмотрим все эти процессы подробнее, двигаясь как бы расширяющимися кругами; таков наш метод изложения – вначале читателю надо усвоить самые простые понятия, а затем переходить к более сложным. Поэтому сейчас достаточно отметить лишь два важнейших факта.

1. Причина всех осложнений при диабете – повышенный сахар крови.

2. Современная медицина предоставляет диабетику средства, позволяющие контролировать и регулировать уровень сахара в крови – независимо от способности поджелудочной железы вырабатывать инсулин.

В человеческом организме все должно быть сбалансировано, все его системы должны функционировать в определенных рамках, все жизненные показатели – в том числе и сахар крови – должны находиться в определенных границах. Это достигается обратной связью, существующей между воздействием на организм и откликом на это воздействие; и каждый наш орган фактически является тонким и сложным устройством, реализующим эту обратную связь. Вот простейший пример: мы перешли с шага на бег, мы расходуем больше энергии, и тут же сердце стало биться чаще, а легкие требуют больших объемов воздуха. Но в данном случае нам нужен не только воздух; в результате пробежки мы проголодаемся, и нам потребуется больше пищи.


Рис. 1.3. Кривая секреции инсулина у здорового человека


Аналогичную регуляцию, характерную для всех систем с обратной связью, осуществляет и поджелудочная железа. Рассмотрим, как это происходит у здорового человека, проиллюстрировав изложение графиком естественной секреции инсулина (рис. 1.3).

Утром в крови содержится сравнительно небольшое количество сахара (так называемый «сахар натощак») и небольшое (базовое) количество инсулина. Низкий уровень сахара в крови вызывает ощущение голода, и человек завтракает – предположим, в 7 часов утра. Разумеется, кроме белковой пищи он ест хлеб, содержащий углеводы, пьет кофе или чай с сахаром или с чем-нибудь сладким. В результате концентрация глюкозы в крови повышается, и по этому сигналу поджелудочная железа начинает вырабатывать инсулин (как это показано на рис. 1.3). Инсулин способствует проникновению глюкозы в клетки, и ее уровень в крови довольно быстро снижается. В 12 часов человек снова ощущает голод – наступает время второго завтрака. Он ест, и все повторяется снова: повышение сахара, выброс новой порции инсулина, понижение сахара. Аналогичные процессы повторяются в 18 часов (после обеда) и в 22 часа (после ужина). Возможна, разумеется, иная схема питания: завтрак – в восемь утра, обед – в два часа дня, а ужин – в девять вечера, но суть от этого не меняется: у здорового человека поджелудочная железа отреагирует во всех случаях одинаково – выбросом необходимой порции инсулина. При этом здоровый человек может есть что угодно (в том числе много