Читать книгу «Зачем мы спим. Новая наука о сне и сновидениях» онлайн полностью📖 — Мэттью Уолкера — MyBook.
image

2. Кофеин, джетлаг и мелатонин

Потеря и возвращение контроля над ритмом сна

Как ваш организм узнаёт, что пора спать? Почему происходит нарушение ваших биоритмов, когда вы оказываетесь в другом часовом поясе? Как вы преодолеваете джетлаг[4]? Почему эта акклиматизация вызывает еще большее нарушение биоритмов по возвращении домой? Почему некоторым людям приходится принимать мелатонин, чтобы побороть это расстройство? Почему (и как) чашка кофе помогает вам бодрствовать? И пожалуй, самый важный вопрос: каким образом вы узнаёте, достаточно ли вы спите?

Есть два главных фактора, определяющие, когда вы хотите спать и когда вы хотите бодрствовать. В этот момент, когда вы читаете эти самые слова, оба фактора оказывают серьезное влияние на ваш мозг. Первый фактор – это сигнал, посылаемый вашими внутренними суточными часами, расположенными глубоко в мозге. Эти часы задают цикличный суточный ритм, который в одно и то же время заставляет вас чувствовать себя уставшим или бодрым соответственно. Второй фактор – химическое вещество, которое накапливается в вашем мозге и вызывает непреодолимое желание спать. Чем дольше вы бодрствовали, тем больше этого вещества накапливается в организме и, соответственно, тем бóльшую сонливость вы ощущаете. Именно от соотношения двух этих факторов зависит, насколько вы бодры и внимательны в течение дня, насколько вы чувствуете себя уставшим и готовым ко сну поздним вечером и отчасти – насколько хорошо вы будете спать.

Есть ритм?

Основой многих вопросов, заданных в начале главы, является мощная формирующая сила вашего суточного ритма, известная также как ваш циркадный, или околосуточный, ритм. У любого живого существа вырабатывается собственный циркадный ритм (circa означает «около», а dian – производное от diam, означающего «день»). Действительно, у каждой живой твари на нашей планете с продолжительностью жизни более нескольких дней вырабатывается этот естественный цикл. Внутренний 24-часовой механизм в вашем мозге посылает свой сигнал о циркадном ритме каждому участку мозга и каждому органу вашего тела.

Ваш суточный ритм определяет, в частности, когда вы предпочитаете бодрствовать и когда хотите спать. Но он также контролирует и другие ритмические схемы. К ним относятся ваши заданные во времени желания есть и пить, настроение и эмоции, количество выделяемой мочи[5], базовая температура тела, скорость обмена веществ и выработка многочисленных гормонов. Не случайно, что вероятность побить олимпийский рекорд четко привязана ко времени суток: она максимальна в естественный пик человеческого циркадного ритма, чуть позже полудня. Даже процесс рождений и смертей демонстрирует циркадную ритмичность благодаря заметным колебаниям в жизненно важных обменных, сердечно-сосудистых, температурных и гормональных процессах, которые контролирует этот ритмоводитель.

Задолго до того, как мы открыли этот задающий общий ритм биологический фактор, в одном оригинальном эксперименте было осуществлено нечто совершенно замечательное: остановлено время – по крайней мере, для растений. В 1729 году французский геофизик Жан-Жак Дорту де Меран нашел первое доказательство того, что жизнь растения определяется его собственным внутренним временем.

Де Меран изучал движение листьев растений, которые демонстрировали гелиотропизм, то есть феномен, когда листья или цветок следуют траектории солнца при его движении по небосводу. В частности, де Меран заинтересовался одним растением, которое называется мимоза стыдливая (Mimosa pudica)[6]. Листья этого растения не только описывают дугу, следя за движением солнца по небу, – они сворачиваются ночью, словно увядая. С наступлением следующего дня абсолютно здоровые листья вновь раскрываются, словно зонтик. Такой образец поведения повторяется каждое утро и каждый вечер, из-за чего знаменитый биолог-эволюционист Чарльз Дарвин назвал их «спящими листьями».

До эксперимента де Мерана многие считали, что раскрытие и сворачивание листьев растения было обусловлено исключительно восходом и заходом солнца. Вполне логично: дневной свет (даже в пасмурные дни) побуждал листья широко раскрываться, а последующее наступление темноты командовало листьям закрывать лавочку и сворачиваться. Эта версия была опровергнута де Мераном. Сначала он поместил растение на воздухе, где оно могло получать сигналы света и темноты, которые, по всей вероятности, ассоциировались у него с днем и ночью. Как и ожидалось, листья раскрывались при дневном свете и сворачивались ночью.

А затем произошел гениальный поворот. Де Меран на сутки поместил растение в плотно закрытую коробку, окутав его полной темнотой днем и ночью. В течение этих двадцати четырех часов абсолютной тьмы он время от времени подсматривал за растением и, не нарушая режима темноты, изучал положение листьев. Несмотря на то что растение было лишено влияния солнечного света, оно все равно вело себя так, будто купалось в лучах солнца. Его листья гордо раскрывались на восходе, затем, словно по команде, в конце дня оно сворачивало листья, по-прежнему не получая сигнала от светила, и в таком состоянии листья оставались всю ночь.

Это было революционное открытие: де Меран показал, что живой организм ведет отсчет своего собственного времени, а не является рабом периодических команд солнца. Где-то внутри растения существовал генератор суточного ритма, который мог отслеживать время без подсказок внешнего мира. Это растение имело не просто циркадный ритм, а эндогенный, или самогенерирующийся, ритм. Подобное явление весьма похоже на самовоспроизводящееся биение сердца. Разница лишь в том, что ритм вашего сердца гораздо быстрее, обычно один удар в секунду, а не в сутки, как в случае циркадного ритма.

Удивительно, но понадобилось еще двести лет, чтобы доказать: у людей имеется похожий циркадный ритм, генерируемый внутри нашего организма. Был поставлен эксперимент, который привнес нечто неожиданное в наше понимание внутреннего отсчета времени. Шел 1938 год. Профессор Натаниэл Клейтман из Чикагского университета вместе со своим научным ассистентом Брюсом Ричардсоном собирались провести еще более радикальный научный эксперимент. Он требовал от ученых такой самоотверженности, что до сегодняшнего дня мы вряд ли можем с чем-либо сравнить ее.

Клейтман и Ричардсон собирались стать подопытными кроликами в собственном эксперименте. Собрав запас еды и воды сроком на шесть недель, взяв с собой пару разборных больничных кроватей, они направились в Мамонтову пещеру в штате Кентукки – одну из самых глубоких на планете, настолько глубокую, что в ее дальние уголки никогда не проникает солнечный свет. Именно в этом мраке Клейтман и Ричардсон собирались доказать, что биологический ритм человека составляет приблизительно одни сутки (циркадные), а не в точности сутки.

Кроме еды и воды ученые взяли с собой массу измерительных приборов для определения температуры тела, а также ритмов сна и бодрствования. Область, где проводились необходимые замеры, образовывала центр их жизненного пространства, огороженного с обеих сторон кроватями. Высокие ножки кроватей были поставлены в ведра с водой – подобно замкам, обнесенным рвами, чтобы отпугнуть бесчисленных маленьких (и не очень маленьких) тварей, скрывающихся в глубинах Мамонтовой пещеры, и не позволить им забраться в постели.

Вопрос, на который должен был ответить эксперимент Клейтмана и Ричардсона, был простым: когда их биологические ритмы сна и бодрствования будут изолированы от ежедневного цикла света и темноты, станут ли они, вкупе с их температурой тела, непостоянными или останутся такими же, как у людей внешнего мира, находящихся под воздействием суточного светового ритма? В целом они провели тридцать два дня в абсолютной темноте. Во время этого эксперимента они не только обзавелись внушительной растительностью на лице, но и сделали два революционных открытия. Первое заключалось в том, что при отсутствии солнечного света люди, подобно гелиотропным растениям де Мерана, вырабатывают собственные эндогенные циркадные ритмы. То есть ни Клейтман, ни Ричардсон не опустились до беспорядочного чередования периодов бодрствования и сна, а демонстрировали предсказуемый и повторяющийся образец продолжительного периода бодрствования (примерно пятнадцать часов), прерывающийся примерно девятичасовым сном.

Вторым неожиданным и более важным результатом было то, что протяженность их неизменно повторяющихся циклов сна и бодрствования составила не привычные двадцать четыре часа, а стабильно дольше, чем привычные земные сутки. Цикл сна и бодрствования Ричардсона, которому было за двадцать, составил от двадцати шести до двадцати восьми часов. Цикл Клейтона, которому тогда было за сорок, был чуть ближе к двадцати четырем часам, но опять-таки больше суток. Таким образом, в условиях изоляции и в полной темноте внутренне генерируемые сутки каждого из них составили несколько больше двадцати четырех часов. Как неточные часы, Клейтман и Ричардсон к каждым проходящим реальным суткам начали прибавлять время, основываясь на собственном хронометраже.

Поскольку наш внутренний биологический цикл составляет не в точности двадцать четыре часа, а около того, потребовалось ввести новый термин: циркадный ритм – то есть ритм, период которого приблизительно равен протяженности суток, а не в точности двадцати четырем часам[7]. За семьдесят с лишним лет после плодотворного эксперимента Клейтмана и Ричардсона мы уже установили, что средняя продолжительность периода эндогенного циркадного ритма взрослого человека составляет примерно двадцать четыре часа пятнадцать минут. Не слишком далеко от 24-часового оборота Земли, но и не настолько точно, чтобы любой уважающий себя швейцарский часовщик был доволен.

К счастью, большинство из нас не живет в Мамонтовой пещере и не пребывает в ее постоянной темноте. Мы регулярно видим солнечный свет, который спасает наши вечно спешащие внутренние циркадные часы. Солнечный свет систематически подстраивает наши не совсем точные внутренние часы, каждый день подводя нас к точно, а не приблизительно двадцати четырем часам[8].

То, что мозг использует дневной свет для подстройки, – не случайное совпадение, ведь дневной свет – это самый стабильный регулярный сигнал в окружающей нас среде. С момента зарождения нашей планеты и каждый последующий день без исключения солнце всегда восходит утром и садится вечером. Действительно, причина, по которой большинство живых существ приняли циркадный ритм, – необходимость синхронизировать себя и свою деятельность, как внутреннюю (например, температуру), так и внешнюю (например, питание), с орбитальной механикой Земли, которая, вращаясь вокруг своей оси, регулярно чередует фазы света (солнце взошло) и темноты (солнце село).

Однако дневной свет – это не единственный сигнал, на который может среагировать наш мозг, чтобы перезагрузить биологические часы; хотя, наверное, самый главный и наиболее предпочтительный при его наличии. Мозг также может использовать другие внешние подсказки, если они достаточно стабильно повторяются: среди них еда, упражнения, колебания температуры и даже регулярное социальное взаимодействие. Все эти факторы имеют способность перезагружать биологические часы, позволяя им четче подстраиваться под 24-часовой цикл. По этой причине люди с определенной степенью слепоты не утрачивают полностью свой циркадный ритм. Несмотря на то что из-за слепоты они не получают световых подсказок, другие события действуют на них в качестве триггера[9]. Любой сигнал, который использует мозг с целью переустановки внутренних часов, называется zeitgeber – от немецкого «ритмоводитель», или «таймер». Таким образом, хотя свет остается самым надежным и, следовательно, основным таким ритмоводителем, существуют и другие, которые можно использовать в дополнение к смене дня и ночи или вместо нее.

24-часовые биологические часы, расположенные в мозге, называются супрахиазматическим, или надперекрестным, ядром. Как и в случае с большинством анатомических терминов, это название, пусть его и не так легко произнести, достаточно информативно: supra означает «над», а chiasm – «перекресток». Упомянутый перекресток образуют зрительные нервы, идущие от глазных яблок. Эти нервы встречаются в центре вашего мозга, где происходит частичный перекрест волокон зрительного нерва. Супрахиазматическое ядро расположено именно над этим пересечением, и не случайно. Оно анализирует световой сигнал, отправляемый из каждого глаза по зрительным нервам к коре затылочных долей мозга для визуальной обработки. Супрахиазматическое ядро использует эту надежную световую информацию, чтобы устранить неточность хода внутреннего времени и привести его к четко выраженному 24-часовому циклу, предотвращая какое-либо отклонение.

Когда я говорю вам, что супрахиазматическое ядро состоит из 20 000 клеток мозга, или нейронов, вы можете предположить, что это огромное количество, занимающее большой объем вашего черепного пространства, но на самом деле это совсем не много. Мозг состоит приблизительно из 100 миллиардов нейронов, так что относительно всего объема мозга супрахиазматическое ядро – крохотная область. Однако, несмотря на малые размеры супрахиазматического ядра, его влияние на мозг весьма заметно. Эти крошечные часики – главный дирижер симфонии биологических ритмов, как вашей жизни, так и жизни всех остальных видов. Супрахиазматическое ядро контролирует огромное количество образцов поведения, включая предмет нашего разговора в этой главе – ваше желание бодрствовать или спать.

Для видов, которые активны в течение дня, например для человека, циркадный ритм запускает в дневное время многие биологические процессы, давая вам возможность быть бодрым и активным. Затем эти процессы постепенно затихают и в ночное время окончательно сходят на нет, прекращая свое влияние. На рис. 1 показан пример циркадного ритма температуры вашего тела. Рисунок представляет график внутренней температуры тела, измеряемой ректально у группы взрослых испытуемых. С полудня (в левой части графика) температура тела начинает повышаться, достигая пика в послеобеденные часы. Затем траектория меняется, температура начинает падать, по мере приближения времени сна опускаясь ниже температуры полуденной точки отсчета.

Биологический циркадный ритм координирует снижение внутренней температуры тела по мере приближения вашего обычного времени сна. Нижнего порога температура достигает через два часа после начала сна. Однако этот температурный ритм не зависит от того, действительно ли вы спите. Если бы я всю ночь не позволял вам уснуть, ваша внутренняя температура все равно бы показала точно такой график. Несмотря на то что снижение температуры помогает стимулировать сон, она будет повышаться и понижаться независимо от того, спите вы или бодрствуете. Это классическая демонстрация предопределенного циркадного ритма, движение которого, как тиканье метронома, обязательно будет повторяться снова и снова. Температура – это один из суточных ритмов, которыми управляет супрахиазматическое ядро. Другие – бодрствование и сон. Таким образом, они находятся под контролем циркадного ритма, а не наоборот. То есть ваш циркадный ритм будет повторяться каждые двадцать четыре часа, независимо от того, спали вы или нет. В этом отношении циркадный ритм очень стабилен. Но посмотрим на разных людей и увидим, что их циркадные ритмы отличаются.

Рис. 1. Типичный 24-часовой циркадный ритм (внутренняя температура тела)