Читать книгу «Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей» онлайн полностью📖 — Мартина Форда — MyBook.
image

Создатели интеллекта

Интервью для этой книги проводились с февраля по август 2018 г. Практически все они длились не меньше часа, а некоторые существенно дольше. Записанные, транскрибированные, а затем отредактированные командой издательства Packt тексты я дал своим собеседникам на проверку. Уверен, что книга верно отражает мысли респондентов.

Эксперты, с которыми я общался, имеют разное происхождение и сотрудничают с разными компаниями. Но вы быстро обнаружите, насколько сильно влияние Google на сообщества, связанные с ИИ. Из двадцати трех специалистов у семи есть или были связи с Google или холдингом Alphabet. Много талантливых людей работает в Массачусетском технологическом институте (MIT) и Стэнфорде. Джеффри Хинтон и Иошуа Бенджио представляют университеты Торонто и Монреаля соответственно, а правительство Канады ведет четкую промышленную политику, ориентированную на робототехнику и ИИ. В Соединенных Штатах работали 19 из 23 опрошенных, но больше половины из них родились за пределами США: в Австралии, Китае, Египте, Франции, Израиле, Родезии (ныне Зимбабве), Румынии и Великобритании. Это ярко иллюстрирует роль иммиграции квалифицированных кадров в технологическом лидерстве США.

Проводя интервью, я все время помнил, что книгу будут читать самые разные люди, от специалистов по теории вычислительных машин и систем до менеджеров и инвесторов. Но самая важная часть аудитории – молодые люди, которые могут задуматься о карьере в области ИИ. Сейчас в ней наблюдается дефицит кадров, особенно специалистов с навыками глубокого обучения, что дает возможность для хорошего карьерного роста. В настоящее время прилагаются усилия по привлечению в отрасль талантливых специалистов, и уже широко признается необходимость профессиональной интеграции.

Около четверти опрошенных мной – женщины. Здесь их доля выше, чем в сфере ИИ и машинного обучения в целом. Согласно недавним исследованиям, женщины составляют примерно 12 % ведущих сотрудников в области машинного обучения[5]. В процессе интервью многие подчеркивали необходимость увеличения доли как женщин, так и представителей меньшинств.

Одна из моих собеседниц уделяет особое внимание многообразию в области ИИ. Фей-Фей Ли из Стэнфорда – соучредитель AI4ALL[6], устраивающей летние учебные лагеря для старшеклассников из мало представленных в этой сфере групп. AI4ALL получила поддержку отрасли, а также грант от Google, и теперь такие программы проводятся в шести американских университетах. В этом направлении еще многое предстоит сделать, но основания для оптимистических прогнозов уже есть.

Хотя книга рассчитана на широкий круг читателей, в тексте будут встречаться специальные понятия и термины. Если вы ранее ничего не знали об ИИ, то я рад, что вас познакомят с ним ведущие специалисты, и рекомендую вам начать с краткого словаря, приведенного ниже. В интервью Стюарта Рассела – соавтора ведущего учебника по ИИ – вы найдете объяснение ключевых концепций области.

Возможность взять эти интервью была для меня честью. Надеюсь, вы тоже увидите в моих собеседниках вдумчивость, умение рассказывать и глубокую приверженность идее работы на благо человечества. Чего в книге нет, так это единодушия. Она наполнена разнообразными, зачастую резко противоречивыми представлениями, мнениями и прогнозами. Понятно только одно: ИИ – широко открытое пространство. Можно строить предположения о природе будущих инноваций, скорости их появления и конкретных вариантах их применения. Именно из-за этой комбинации потенциальной разрушительности с фундаментальной неопределенностью необходим содержательный и всеобъемлющий разговор о будущем ИИ и его влиянии на наш образ жизни. Надеюсь, моя книга внесет в него свой вклад.

Краткий словарь терминов

В нескольких интервью углубленно рассматриваются методы, используемые в сфере ИИ. Для понимания материала специальных знаний не требуется, но встречающиеся термины желательно знать. Вот объяснение наиболее важных из них. Если вы сочтете какой-то раздел технически сложным и запутанным, просто пропустите его и переходите к следующему.

Машинное обучение (machine learning) – раздел ИИ о методах построения алгоритмов, способных обучаться на данных. Другими словами, алгоритмы машинного обучения – это компьютерные программы, которые, по сути, программируют сами себя, просматривая информацию. Раньше считалось, что «компьютеры совершают только те действия, которые были запрограммированы», но эта ситуация меняется. Среди многочисленных типов алгоритмов машинного обучения самый революционный (и привлекающий всеобщее внимание) – это глубокое обучение.

Глубокое обучение (deep learning) – вид машинного обучения, в котором используются глубокие (или многоуровневые) искусственные нейронные сети (artificial neural networks), то есть программное обеспечение, имитирующее работу нейронов мозга. Глубокое обучение послужило основной движущей силой развития ИИ.

Есть и другие термины, которые, скорее всего, новичкам покажутся сложными. Без их глубокого понимания вполне можно обойтись, но краткое пояснение лишним не будет.

Метод обратного распространения ошибки (backpropagation) – алгоритм, используемый в системах глубокого обучения. Информация, поступающая в нейронную сеть, распространяется обратно через слои нейронов, вызывая у некоторых из них изменение настроек – весов (см. ниже «Обучение с учителем»). Так постепенно сеть находит правильный ответ. В 1986 г. Джеффри Хинтон стал соавтором первой полноценной статьи на эту тему, о чем более подробно вы узнаете из интервью с ним.

Еще более непонятный термин – градиентный спуск (gradient descent) – относится к математической технике, которую алгоритм обратного распространения использует для уменьшения ошибки в процессе обучения сети.

Встречаются в книге и термины, относящиеся к типам или конфигурациям нейронных сетей: рекуррентные (recurrent) и сверточные (convolutional) сети, а также машины Больцмана (Boltzmann machines). Различия обычно сводятся к способам связи нейронов. Детальное рассмотрение этих понятий выходит за рамки книги. Тем не менее я попросил объяснить их Яна Лекуна – изобретателя сверточной архитектуры, которая широко используется в распознавании объектов на изображениях.

Термин байесовский (bayesian) можно перевести как «вероятностный». Он встречается в таких сочетаниях, как «байесовские методы машинного обучения» или «байесовские сети». Они относятся к алгоритмам, которые используют вероятностные зависимости. Термин назван в честь священника Томаса Байеса (1701–1761), который сформулировал способ обновления вероятности события после возникновения другого, статистически взаимозависимого с ним. Байесовские методы очень популярны как среди специалистов по теории вычислительных машин и систем, так и среди ученых, моделирующих человеческое познание. Больше всего по этой теме рассказал Джуда Перл.

Способы обучения ИИ-систем

Существуют разные типы машинного обучения. Решающую роль в развитии искусственного интеллекта играют инновации, то есть новые способы обучения систем ИИ.

При обучении с учителем (supervised learning) алгоритму передаются структурированные, классифицированные и снабженные метками данные. Например, чтобы научить систему глубокого обучения распознавать на снимках собак, ей нужно предоставить много тысяч (или даже миллионов) изображений этого животного с меткой «собака». Кроме того, потребуется огромное количество изображений без собаки с меткой «нет собаки». После обучения можно показывать системе новые фотографии, и она будет определять наличие на них собаки на уровне, превосходящем возможности обычного человека.

Обучение с учителем – наиболее распространенный метод, применяемый в современных системах ИИ. На его долю приходится около 95 % практических приложений. Именно оно послужило основой машинного перевода (после обучения на миллионах предварительно переведенных документов) и ИИ-систем диагностики (после обучения на снимках с пометками «рак» и «нет рака»). К сожалению, для такого обучения требуются огромные объемы маркированных данных. Именно поэтому лидирующее положение в технологии глубокого обучения занимают такие компании, как Google, Amazon и Facebook.

Обучение с подкреплением (reinforcement learning), по сути, представляет собой обучение на практике или методом проб и ошибок. Система учится не на правильных размеченных данных, а самостоятельно ищет решение, получая подкрепление в случае успеха. Это напоминает дрессировку животных, которым в случае правильных действий дается кусочек вкусной еды. Именно обучение с подкреплением применялось для построения систем ИИ, играющих в игры. Из интервью с Демисом Хассабисом вы узнаете, что компания DeepMind использовала этот тип обучения для разработки компьютерной системы AlphaGo.

Проблема обучения по этому алгоритму заключается в необходимости огромного количества тренировочных попыток. Поэтому он применяется в основном для игр или для задач, которые можно воспроизводить на компьютере с высокой скоростью. Обучение с подкреплением можно использовать при разработке беспилотных автомобилей, но не для их эксплуатации на реальных дорогах. Виртуальные машины обучаются в искусственной среде, а после завершения обучения программное обеспечение устанавливается на реальные автомобили.

Обучение без учителя (unsupervised learning) обеспечивает непосредственное обучение на поступающих из окружающей среды неструктурированных данных. Именно так учатся люди. Например, дети учатся говорить, слушая речь родителей. Разумеется, человек использует и другие типы обучения, но самым характерным для него остается наблюдение и неконтролируемое взаимодействие с окружающей средой.

Обучение без учителя – один из наиболее многообещающих путей развития ИИ. Только представьте системы, умеющие обучаться сами без подготовки данных. Но их разработка – одна из самых сложных задач. Ее решение станет важной точкой на пути к созданию сильного ИИ.

Термин сильный ИИ обозначает истинно мыслящую машину, изначальную цель создания ИИ. Еще его называют интеллектом, сравнимым с человеческим разумом. Примеры сильного ИИ можно наблюдать в научной фантастике: компьютер HAL 9000 из «Космической одиссеи», главный компьютер космического корабля «Энтерпрайз» (или Дэйта) из «Звездного пути», андроид C3PO из «Звездных войн» и агент Смит из «Матрицы». Все эти вымышленные системы могли пройти тест Тьюринга (Turing test), то есть вести беседу как человек. Этот тест был предложен Аланом Тьюрингом в статье 1950 г. «Вычислительные машины и разум»[7], которую можно считать основополагающей работой в области ИИ.

Есть вероятность, что когда-нибудь появится cуперинтеллект (superintelligence), или машина, превосходящая интеллектуальные способности любого человека. Это может произойти в результате простого увеличения аппаратных мощностей и быть ускорено самосовершенствованием этой машины. Так она запустит «рекурсивный цикл улучшения» или «быстрый интеллектуальный взлет», создавая проблему «выравнивания», если вступит в противоречие с интересам человека.

Иошуа Бенджио

“ИИ, который существует сейчас и может появиться в обозримом будущем, не понимает и не чувствует нормы морали".


Директор Монреальского института алгоритмов обучения (MILA), доктор computer science, профессор кафедры информатики и математических методов Монреальского университета, соруководитель проекта Learning in Machines & Brains Канадского института перспективных исследований (CIFAR)


Иошуа Бенджио широко известен как один из пионеров глубокого обучения. Он активно продвигал исследования нейронных сетей, в частности обучение без учителя, и стал соавтором книги «Глубокое обучение»[8] – одним из основных учебников по одноименному предмету.


Мартин Форд: Вы играете ведущую роль в исследованиях ИИ, поэтому начать мне хотелось бы с вопроса о том, какие исследовательские проблемы стоят на пути к сильному ИИ.

Иошуа Бенджио: До создания ИИ, сравнимого с человеческим, нам еще очень далеко. Нужно понять, к примеру, почему невозможно создать машину, которая понимала бы окружающую действительность так же, как человек. Чего нам не хватает: обучающих данных или вычислительных мощностей? Многие считают, что причина состоит в отсутствии необходимых базовых компонентов, например, умения видеть причинно-следственные связи в данных, которое позволяет делать обобщения и находить правильные ответы в условиях, отличных от тренировочных.

Человек может представить, как он переживет новый для себя опыт. Например, если вы никогда не попадали в автомобильную аварию, вы все равно сможете прокрутить у себя в голове такую ситуацию и принять правильное решение. Обучение с учителем помогает компьютеру находить статистические закономерности в поставляемых данных, которые заранее классифицированы и размечены людьми.

Многие исследования пока не дали значимых результатов. Компьютер не может автономно приобретать знания о мире, воздействовать на него и наблюдать результат воздействия. Ответы на вопрос, как это реализовать, ищем не только мы.

М. Ф.: Какие проекты в настоящее время можно считать первостепенными в области глубокого обучения? Мне первым делом вспоминается программа AlphaZero. Есть ли другие?

И. Б.: На мой взгляд, из множества интересных проектов наиболее перспективны те, в которых агент в виртуальном мире пытается решать задачи, попутно изучая все с ними связанное. Такими проектами занимаемся мы в MILA, а также компании DeepMind, OpenAI, Университет Беркли, Facebook и Google в рамках проекта Google Brain. Это новые горизонты.

Но это долговременные исследования. Мы работаем не над конкретными вариантами применения глубокого обучения, а над тем, как научить агента осмысливать окружающую среду, говорить и понимать так называемый обоснованный язык (grounded language).

М. Ф.: Что означает этот термин?

И. Б.: Раньше компьютеры обучались языку, знакомясь с множеством текстов. Причем они достигали понимания только через связь слова с называемой им реалией. В отличие от робота, человек может сопоставить слово не только с объектом из реального мира, но и с вариантами изображения этого объекта.

Многочисленные исследования в области обучения обоснованному языку сводятся к попыткам научить роботов понимать язык хотя бы на уровне отдельных слов и выражений и реагировать соответствующим образом. Это очень интересное направление, необходимое для реализации таких вещей, как диалог с роботами, личные помощники и т. п.

М. Ф.: То есть, по сути, идея состоит в том, чтобы дать агенту свободу в смоделированной среде, позволив ему учиться, как это делают дети?

И. Б.: Именно так. Более того, мы пользуемся результатами исследований в области детского развития и изучаем, какие этапы проходит новорожденный в первые месяцы жизни, постепенно приобретая представления о мире. До сих пор не совсем понятно, какие умения являются врожденными, а какие получены путем изучения.

Несколько лет назад я предложил для машинного обучения практику, которая используется при дрессировке животных – обучение по плану (curriculum learning). Обучающие примеры в этом случае демонстрируются не произвольно, а в последовательности, целесообразной для обучения. Процесс начинается с простых концепций, которые после их освоения учеником можно использовать как «кирпичики» для объяснения более сложных понятий.

М. Ф.: Я бы хотел поговорить о работе над сильным ИИ. Очевидно, что важной составляющей этого процесса вы считаете обучение без учителя. Что еще необходимо сделать?

И. Б.: Мой друг Ян Лекун сравнивает этот процесс с подъемом на гору. Сначала все радуются, насколько высоко забрались, но по мере приближения к вершине встречается множество других гор. Сейчас при разработке сильного ИИ четко видна ограниченность используемых подходов. Пока мы искали способы обучения более глубоких сетей, взбираясь на первую гору, создаваемые системы исследовались очень узко – на том этапе было важно просто подняться на несколько шагов вверх.

Как только применяемые техники обучения дали первые удовлетворительные результаты – мы приблизились к вершине первой горы, – стали заметны ограничения. И это следующая гора, которую нужно будет покорять. Поэтому невозможно сказать, сколько еще открытий потребуется.

М. Ф.: А вы можете хотя бы примерно оценить количество гор? Или период времени, который потребуется на создание сильного ИИ? Просто поделитесь своими прогнозами.

И. Б.: Не вижу смысла говорить о сроках. Невозможно предсказать, когда именно будет открыта дверь, от которой у нас нет ключа. Могу только заверить, что в ближайшие годы никаких прорывов не будет.

М. Ф.: Считаете ли вы перспективными глубокое обучение и нейронные сети в целом?

И. Б.: Да, многолетний прогресс в области глубокого обучения и нейронных сетей означает, что открытые концепции будут активно использоваться и дальше. Возможно, именно они помогут понять, каким образом мозг животных и человека осваивает сложные понятия. Но этого недостаточно для создания сильного ИИ. В настоящее время мы видим ограниченность имеющихся систем и собираемся улучшать и развивать их.

М. Ф.: Я знаю, что Институт искусственного интеллекта Пола Аллена (AI2) работает над проектом Mosaic, в рамках которого компьютеру пытаются помочь обрести разум. Считаете ли вы, что это важная задача? Ведь, возможно, разум рождается в процессе обучения?

И. Б.: Я уверен, что он возникает именно как результат обучения. Разум не может появиться только потому, что кто-то положил вам в голову какие-то знания. По крайней мере, у людей так.

М. Ф.