Читать книгу «Скорость мысли. Грандиозное путешествие сквозь мозг за 2,1 секунды» онлайн полностью📖 — Марка Хамфриса — MyBook.
image








Если такое количество нейронов сетчатки спокойно обходится без импульсов, почему тогда другие нейроны все же используют их? Зачем преобразовывать гибкий, непрерывный, аналоговый сигнал потоков молекул и электрических потенциалов в дискретный, бинарный, двоичный – зачем, казалось бы, отбрасывать полезную информацию?

Ответ прост: импульсы позволяют нейронам передавать информацию точно, быстро и далеко.

Точно, быстро и далеко

Точно

Импульс – это временной маркер, сообщение, несущее информацию из разряда «что-то произошло прямо сейчас». Это может быть незначительное изменение в потоке света, падающего на сетчатку лягушки, вызванное небольшим движением маленького изогнутого темного объекта. Это может быть писк микроволновки, сообщающий, что остатки вчерашнего карри разогреты. Это может быть внезапное усиление давления на боковые мышцы языка, когда вы рассеянно прикусываете его коренными зубами. То, что произошло, почти наверняка привело к изменению в серии импульсов, приходящих от других нейронов в данный нейрон, – это интересная история, которую мы расскажем в следующей главе.

На создание импульса у нейрона уходит меньше миллисекунды, поэтому сам импульс может фиксировать время события с точностью до миллисекунды. Следовательно, импульсы – это сигналы, которые с чрезвычайной точностью фиксируют время события во внешнем мире.

Прекрасный пример исключительной точности нервных импульсов – то, как мозг крысы получает информацию от ее усов. Система усов-вибрисс у грызунов – излюбленный объект исследований нейробиологов, пытающихся понять, как мозг обрабатывает сенсорную информацию, поскольку она состоит из небольшого количества деталей.

У крысы всего от 30 до 35 основных вибрисс с каждой стороны морды [29], расположенных пятью аккуратными рядами, что по сложности несравнимо с более чем шестью миллионами колбочек в человеческом глазу. Мы можем проследить путь от нерва у основания усика до мозга и точно определить, какие нейроны реагируют на сигнал от каждого из них. Определив нейроны, получающие сигналы от одной конкретной вибриссы, мы можем, щелкая по ней, следить за ними и регистрировать реакцию.

Лаборатория Расмуса Петерсена в Манчестерском университете занималась в 2015 году во время экспериментов под руководством Майкла Бейла именно этим, чтобы выяснить, насколько точно каждый из первичных нейронов может посылать импульсы-сообщения [30]. Они использовали крошечный моторчик, чтобы быстро и в случайном порядке приводить вибриссу в движение, и повторяли один и тот же шаблон движений неоднократно, записывая сигнал с одного из нейронов, связанных с основанием этого усика. Каждый подобный сеанс дерганья крысы за усы заставлял нейрон посылать определенную морзянку импульсов. Если ритмичная последовательность импульсов являлась сообщением об изменениях, ощущаемых усиком – возможно, о том, как быстро он движется или насколько сильно он изогнут, – то она должна довольно точно повторяться при каждом сеансе воздействия одним и тем же шаблоном движений.

Последовательность повторялась настолько точно, что лаборатория Петерсена столкнулась с техническими ограничениями своего высокотехнологичного регистратора. Мы живем в эпоху цифровых технологий, поэтому прибор, регистрирующий потенциал на электроде, расположенном рядом с чувствительным нейроном вибриссы, производил запись значений с частотой 24,4 кГц – то есть считывание показаний происходило 24 400 раз в секунду. Даже при таком абсурдно детальном временном разрешении казалось, что все импульсы происходили точно в один и тот же момент каждый раз, когда исследователи воспроизводили последовательность воздействий на вибриссу. «Точно в один и тот же момент» означает, что нервные импульсы в последовательности, отправляемой нейроном в ответ на набор движений вибриссы, повторяемый машиной, следовали каждый раз с точностью в пределах 41 микросекунды друг от друга. Это невообразимо крошечный промежуток времени: если на первой серии механических воздействий импульс регистрировался, скажем, на отметке 3,68092 секунды, то при многократном повторении он каждый раз оказывался на записи где-то между отметками 3,68091 и 3,68092 секунды. Столкнувшись с ограничениями используемых технологий, исследователи из лаборатории Петерсена были вынуждены собрать специальный электронный прибор для записи измерений с гораздо большей частотой дискретизации – 500 кГц, то есть считыванием показаний с электрода 500 000 раз в секунду, – чтобы выяснить, насколько точно повторялись импульсы.

Ученые использовали этот новый измеритель, чтобы определить абсолютный предел точности, с которой нейрон может отправлять импульсы в ответ на внешний раздражитель. Они проанализировали видеозаписи, на которых крысы используют свои усы, чтобы найти максимально быстрое движение, которое может совершить вибрисса, поскольку чем быстрее движение, тем точнее должны отправляться нервные импульсы, которые оно вызовет. Используя свой механизм с моторчиком, чтобы многократно перемещать вибриссу одним сверхбыстрым движением, они регистрировали время, которое требовалось для отправки первого импульса. Удивительно, но самый пунктуальный нейрон каждый раз отправлял этот первый импульс в течение примерно пяти микросекунд от начала движения. Благодаря импульсам вибриссы могут с исключительной точностью сообщать мозгу крысы, что с ними происходит.

То, что импульсы от сенсорных клеток на вибриссах крыс очень точны, неслучайно. Они жизненно важны для этих животных [31]. Грызуны ищут пищу в темноте, где острое зрение бесполезно, поэтому крысиные глаза работают довольно паршиво: их основная задача – не давать детальной картины окружающего ее мира, а лишь различать в нем предметы с достаточной уверенностью, чтобы определить, к чему стоит приближаться, а от чего убегать. Усами крысы ощупывают предметы и определяют, что перед ними. Их усы постоянно двигаются взад и вперед, примерно восемь раз в секунду, обнаруживая препятствия и изучая обстановку. Положите перед крысой детальку Lego, и она не сможет сказать вам, какого та цвета. Но крыса будет тщательно исследовать ее усами, сгибая их об нее и слегка поглаживая, чтобы понять форму и текстуру [32]. Вибриссы для крысы – то же самое, что глаза для нас; когда она действительно хочет что-то внимательно изучить, то будет «разглядывать» это усами: крыса складывает усы вперед, чтобы они касались этого предмета, а затем вибрирует ими с частотой, в четыре раза превышающей их обычную поисковую активность [33]. Какая удача, что нервные клетки вибрисс, посылающие импульсы в крысиный мозг, могут делать это с такой точностью.

Быстро

Стремительные события, происходящие во внешнем мире, требуют, чтобы информация о его изменениях быстро передавалась в мозг, быстро обрабатывалась там и быстро отправлялась к другим органам. Потрогайте кончик усика крысы, и она тут же повернет голову. Ваш блуждающий по офису взгляд останавливается на печенье, и вам нужно быстро принять решение: схватить его, или это будет неприлично. С помощью импульсов мозг решает проблему скорости передачи информации.

Почти у всех нейронов в вашем мозгу есть только один аксон, специализированный кабель, отходящий от тела клетки, который передает импульсы этого нейрона к месту назначения. Строение некоторых аксонов предназначено для скоростной передачи импульса. По аксону в коре головного мозга импульс может перемещаться со средней скоростью около 200 миллиметров в секунду, преодолевая расстояние от задней части коры к передней менее чем за секунду [34]. Сенсорные аксоны в спинном мозге передают сигнал в сотни раз быстрее [35]: по седалищному нерву землеройки импульс несется со скоростью 42 метра в секунду, а у слона – 70 метров в секунду! Это 252 километра в час. Нервные волокна слона еще потягаются с «феррари».

Передача информации между нейронами любым другим способом происходит намного медленнее. Импульс пробегает по аксону в 20 раз быстрее, чем когда нейрон передает сигнал изменением потенциала всей клетки, и в тысячу раз быстрее, чем при высвобождении молекул на синапсах [36]. Для передачи непрерывных, а не двоичных сообщений между парой нейронов необходимо, чтобы они соприкасались друг с другом, тогда малая скорость передачи сигнала будет компенсироваться ничтожным расстоянием. Так это работает в первых слоях сетчатки, где биполярные нейроны непосредственно соприкасаются с колбочками. Однако понадобится не менее 700 крупных нейронов, чтобы они покрыли расстояние от затылочной до лобной части коры вашего головного мозга [37]. Отправка аналогового сообщения по такой цепочке методом «пожарного ведра», когда оно передается, так сказать, из рук в руки от одного соседа другому, займет невероятно много времени. Хуже того, с каждой последующей передачей есть шанс, что в спешке часть воды из ведра выплеснется, то есть сообщение будет искажено или загрязнено шумом. Несколько сотен таких передач испортят любое сообщение, превратив его, как в игре в испорченный телефон, из «в коробке лежит печенье» в «робко дрожит мошенник» – оставив вас голодным и довольно озадаченным по пути на общее собрание сотрудников. Отправка импульсов по быстрым аксонам позволяет решить эти проблемы.

Так что скорость – вторая причина, по которой вибриссы крыс отправляют информацию в мозг с помощью импульсов. Когда крыса бежит в темноте, ее усы касаются поверхности впереди, чтобы животное могло быть уверено, что путь свободен, не провалилось в яму, не налетело на препятствие или другую крысу. Крыса бежит очень быстро, на каждом шаге ее передняя лапа опускается туда, где ее вибриссы были около 200 миллисекунд назад [38]. Это означает, что у мозга крысы есть в распоряжении менее 0,2 секунды, чтобы принять поток информации от 70 вибрисс, расшифровать его смысл и принять решение о реакции: внести поправки в сигналы, отправляемые к мышцам лап, хвоста и тела, чтобы продолжить бег, совершить прыжок или резко остановиться. Отправка импульсов дает возможность чувствительным нервным клеткам у основания вибрисс передавать информацию в мозг крысы, а мозгу – отправлять команды мышцам лап точно и быстро.

Далеко

Большие тела – а в масштабе нейрона «большим» считается все, что различимо невооруженным глазом, например личинка мухи, – нуждаются в том, чтобы их нервные клетки отправляли сообщения на расстояния, намного превышающие размер одного нейрона. Такие, скажем, как расстояние от осязательных окончаний в пальцах до спинного мозга, чтобы датчики температуры и давления на кончике пальца могли передать вашему мозгу, что он, дистанционно управляя мышцами, поместил ваш палец во что-то холодное, склизкое и мягкое, и не мог бы он остановиться прямо сейчас, пожалуйста, это похоже на слизняка, это слизняк – фу, гадость! Импульсы решают проблему передачи точных и быстрых сообщений на большие расстояния.

Импульс может распространяться по аксону любой длины, вплоть до нескольких метров. Аксоны, соединяющие соседние нейроны, тонкие, а те, что соединяют отдаленные нейроны, – намного толще. Чем длиннее аксон, тем, как правило, больше его диаметр и тем быстрее движется по нему импульс. Многие аксоны, соединяющие отдаленные друг от друга клетки, покрыты равномерно расположенными участками оболочки из миелина – жировой массы, которая служит изолятором. У миелиновой оболочки две функции: она позволяет импульсу быстро и без влияния на него внешних помех перемещаться через изолированные участки, а в промежутке между изоляторами находятся наборы тех же каналов в мембране, что и в теле нейрона, которые повторяют цикл открытия и закрытия, регенерируя импульс. Это как бы станции-ретрансляторы, на которых сигнал усиливается, чтобы он мог дойти до адресата в целости и сохранности.

Отправка сообщений между удаленными нейронами любым другим способом обречена на провал. Химический сигнал через высвобождение молекул может передать информацию через крошечные промежутки между клетками, как мы видели на примере сетчатки глаза (мы снова вернемся к этому в следующей главе). Но молекулы, выпущенные в солевой раствор, окружающий нейроны, будут быстро рассеиваться, а их концентрация – уменьшаться пропорционально кубу расстояния от того места, где они были выпущены; так что химическая передача информации на расстояния больше нескольких микрометров неработоспособна. Электрический потенциал самой клетки нейрона падает обратно пропорционально расстоянию от нее, поэтому его изменения потеряются на фоне электрического шума в пределах 1–2 миллиметров. Отправка импульса по аксону позволяет нейрону осуществлять коммуникацию на расстоянии, в сто тысяч раз превышающем размер его собственного тела. Если бы тело нейрона, осуществляющего передачу сигнала из спинного мозга жирафа к мышце его задней ноги, было размером с Землю, длина его аксона превысила бы расстояние до Солнца [39].

Жираф

Жирафы – забавные животные. Сам факт их жизнеспособности целиком и полностью объясняется тем, что нервные клетки способны отправлять информацию точно, быстро и далеко. Абсурдно длинная шея означает, что мозг жирафа находится на расстоянии до 5,5 метров от его ступней (окей, не ступней, копыт). И тут возникает довольно серьезная коммуникационно-управленческая проблема. Как жираф, бегущий по открытой саванне, не превращается в унизительную кучу перепутанных конечностей каждый раз, когда его копыто цепляется за камень или ветку, или наступает на спящую гиену, не ожидавшую подобной наглости? Его мозг должен успеть на все это отреагировать.

Чтобы жираф не превратился в кучу переплетенных ног со сломанной шеей, до потери равновесия необходимо как минимум успеть передать сообщение от сенсорных датчиков в копыте к спинному мозгу, объединить с сообщениями, идущими из головного мозга, и затем скорректировать аллюр, изменяя сигналы, посылаемые мышцам ног от моторных нейронов. Поэтому, когда жираф спотыкается, импульсы от множества сенсорных нейронов отправляются в его спинной мозг моментально и одновременно. По аксонам, соединяющим чувствительные клетки копыта жирафа со спинным мозгом, импульсы бегут со скоростью более 50 метров в секунду. Аксоны, которые передают управляющие сигналы от спинного мозга к мышцам ног, работают с той же скоростью. И один подобный нервный проводник позволяет передать сигнал на столь значительные расстояния без десятков лишних остановок по пути.

Точно, быстро и далеко: когда жираф запинается копытом о препятствие, он успевает отдернуть ногу назад и скорректировать свои движения за десятки миллисекунд, несмотря на то что рефлекторные нейроны в его спинном мозге расположены в нескольких метрах от кончиков копыт.

От глаза к мозгу

Необходимость передавать точно, быстро и далеко – вот почему глаз отправляет в мозг импульсы, а не аналоговые сигналы. Чтобы попасть из вашего глаза в мозг, информация должна пройти огромное расстояние от нейронов сетчатки на задней стенке глазного яблока до промежуточной приемной станции в середине мозга, – расстояние, более чем в 250 000 раз превышающее то, которое химические вещества преодолевают между нейронами в сетчатке. Такое расстояние могут преодолеть только импульсы. И эта информация должна поступать в мозг быстро и точно, чтобы можно было успеть отбить мяч, летящий вам в лицо; поймать стакан, который падает с края стола; чтобы увиденная краем глаза полоска рыжего меха, мелькнувшая в высокой траве, была мгновенно сравнена с образцами, и версии, что это толстый полосатый кот или парень в костюме Тигры, идущий на тематическую вечеринку, были отброшены, а версия подкрадывающегося к вам голодного тигра – принята, и вы успели убежать. Глаз превращает результаты внутренних вычислений изображения краешка последнего печенья в импульсы и отправляет их в глубины коры головного мозга [40]