Читать книгу «Самая главная молекула. От структуры ДНК к биомедицине XXI века» онлайн полностью📖 — Максима Франка-Каменецкого — MyBook.

Генетический код

На рубеже 1950-х и 1960-х годов Фрэнсис Крик и его сотрудники выяснили основные свойства генетического кода. Было доказано, что код триплетный, т. е. одной аминокислоте соответствует последовательность из трех нуклеотидов на мРНК. Эта тройка нуклеотидов была названа кодоном. Текст, записанный в мРНК, считывается рибосомой последовательно, кодон за кодоном, начиная с некоторого начального инициирующего кодона по следующей схеме:


На этой схеме а0, а1… обозначают аминокислотные остатки белка. Напомним, что их может быть 20 типов. А сколько типов кодонов? Легко подсчитать, что всего существует 43 = 64 различных кодона. Так что же, не всякому кодону соответствует аминокислота? Да, не всякому.

Но таких бессмысленных, или незначащих, кодонов очень немного, и они выполняют специальную функцию – служат стоп-сигналами, обозначают конец белковой цепи. Поэтому их еще называют терминирующими кодонами. Подавляющее же большинство кодонов соответствует какому-либо аминокислотному остатку. А это значит, что код вырожден – большинству, если не всем, аминокислотным остаткам должно отвечать несколько кодонов.

К 1961 году стало ясно, что код триплетный, вырожденный и неперекрывающийся (т. е. считывание происходит кодон за кодоном) и что он содержит инициирующие и терминирующие кодоны. Дело было за тем, чтобы установить соответствие каждого аминокислотного остатка конкретным кодонам и узнать, какие кодоны обозначают начало и конец синтеза белковой цепи. Было совершенно ясно, что именно для этого требуется. Нужно «только» прочесть параллельно два текста – ДНКовый (или РНКовый) текст гена и аминокислотный текст соответствующего этому гену белка. Затем сличить эти два текста – и дело сделано.

Вспомним, что именно так были когда-то расшифрованы египетские письмена. Но беда в том, что если белковые последовательности к этому времени умели расшифровывать, то ни последовательности ДНК, ни последовательности РНК читать не умели. Поэтому пришлось пойти по иному пути.

Представьте себе, что вместо Розеттского камня, на котором один и тот же текст был написан египетскими иероглифами и по-гречески, откопали бы во время наполеоновского похода в Египет живого древнего египтянина. Тогда не потребовался бы гений Шампольона, чтобы составить французско-древнеегипетский словарь. Достаточно было бы показывать египтянину различные предметы, а он рисовал бы соответствующие иероглифы.

Именно этим принципом дешифровки кода и воспользовались американский биохимик и генетик из Национального института здравоохранения Маршалл Ниренберг и его немецкий постдок[1] Генрих Маттеи. Ведь клетки-то знают код! Значит, надо предложить им распознавать разные последовательности нуклеотидов, лишь бы было точно известно, что это за последовательности. К этому времени как раз научились синтезировать кое-какие искусственные РНК (но отнюдь еще не любые!). Ниренберг и Маттеи использовали не живые клетки, а клеточные экстракты, которые сохраняли способность синтезировать белок на РНК. Эти экстракты не умели, разумеется, многого другого, что умеет делать клетка, но важно лишь одно – они были способны синтезировать белок по внесенной извне РНК. Такие экстракты назвали бесклеточной системой.

Ниренберг и Маттеи получили экстракт из кишечной палочки и добавили к нему искусственную РНК, состоящую только из урацилов. Так бесклеточной системе был задан первый вопрос: «Какой аминокислоте соответствует кодон УУУ?» Ответ был однозначен: «Кодону УУУ отвечает фенилаланин». Этот ответ, о котором Ниренберг сообщил на Международном биохимическом конгрессе в Москве в 1961 году, произвел настоящую сенсацию. Путь к расшифровке кода был открыт!

Очень быстро удалось сделать подобный перевод для многих аминокислот. Однако определять последовательность нуклеотидов в искусственных мРНК было довольно трудно. В то время еще не умели синтезировать даже короткие фрагменты с заданной последовательностью. Умели лишь получать полинуклеотиды со случайной последовательностью из смеси мономеров, да и то не из любой смеси. Начали думать, как попытаться иными способами расшифровывать кодоны. Но неожиданно произошел новый прорыв, и ситуация резко изменялась.

Мы видели, что у истоков проблемы кода стоял физик, общие свойства кода были выяснены генетическими методами, после чего за дело взялись биохимики. Окончательно проблема была решена, когда на помощь биохимикам пришли химики-синтетики. Главный вклад внес Хар Гобинд Корана.

К 1965 году Корана научился синтезировать короткие фрагменты РНК с заданной последовательностью – сначала двойки (динуклеотиды), а потом тройки (тринуклеотиды). Из таких двоек и троек с помощью ферментов синтезировали длинные полинуклеотиды, в которых эти двойки или тройки повторялись много-много раз. Затем полинуклеотиды со строго определенной и известной последовательностью добавляли в бесклеточную систему и определяли их соответствие белковым цепям.

А к 1967 году расшифровка генетического кода была окончательно завершена. Этот код изображен на рис. 7. В центральном круге таблицы обозначены первые нуклеотиды кодонов, в следующем – вторые, а затем – третьи. На внешней части круга указаны соответствующие кодонам аминокислотные остатки.

Символ Тер обозначает терминирующие кодоны. А где же инициирующие кодоны? Специальных инициирующих кодонов не существует. Эту роль в определенных условиях играет кодон АУГ, обычно отвечающий аминокислоте метионину.

Даже беглого взгляда на рис. 7 вполне достаточно, чтобы заметить определенную закономерность. Вырожденность кода носит явно не случайный характер; то, какой аминокислоте будет соответствовать данный кодон, определяют главным образом два первых нуклеотида. Каков третий нуклеотид – не так уж важно, т. е., хотя код и триплетный, главную смысловую нагрузку несет дублет, стоящий в начале кодона. Иными словами, код квазидуплетный.


Рис. 7. Генетический код. Первая буква кодона расположена в центральном круге, вторая – в первом кольце и третья – во втором. В наружном кольце записаны сокращенные названия аминокислот


Эта главная особенность кода была замечена еще на самой ранней стадии его расшифровки. Конечно, дублетами нельзя закодировать все 20 аминокислот, так как различных дублетов может быть всего 42 = 16. Поэтому третий нуклеотид в кодоне должен нести некоторую смысловую нагрузку.

Существует, однако, правило, которому код подчиняется почти строго. Чтобы его сформулировать, нам надо вспомнить, что четыре нуклеотида – урациловый, цитозиновый, адениновый и гуаниновый – принадлежат по строению к двум разным классам – пиримидиновому (У и Ц) и пуриновому (А и Г) (рис. 6). Так вот, правило вырожденности кода можно сформулировать следующим образом: если два кодона имеют два одинаковых первых нуклеотида и их третьи нуклеотиды принадлежат к одному классу (пуриновому или пиримидиновому), то они кодируют одну и ту же аминокислоту.

Взгляните еще раз на таблицу кода (рис. 7), и вы убедитесь, что это правило выполняется очень хорошо. Но два исключения все же существует. Если бы сформулированное выше правило выполнялось совсем строго, то кодон АУА должен был бы отвечать метионину, а не изолейцину, а кодон УГА – триптофану, а не быть сигналом окончания синтеза.

Универсален ли код?

«Но позвольте, – вправе спросить читатель, – ведь бесклеточная система получена из конкретного организма. Где гарантия, что опыты по расшифровке кода в бесклеточной системе, взятой из другого организма, дадут тот же результат?» Вопрос совершенно резонный. И естественно, он возник уже в ходе работ по расшифровке кода.

Конец ознакомительного фрагмента.

1
...