Читать книгу «Вирусы. Драйверы эволюции. Друзья или враги?» онлайн полностью📖 — Майкла Кордингли — MyBook.
image

Возникновение эгоистического репликатора

Сохранят ли все эти аргументы свою силу, если мы попытаемся рассмотреть самые ранние этапы эволюции и разобраться в том, как именно возникло царство вирусов. Ученые согласны в том, что вирусы возникли до того, как началась эволюция истинных клеточных форм (Koonin, Dolja, 2014). Критериям естественного отбора впервые, по-видимому, соответствовали предковые формы генетических элементов, вероятно на основе РНК, когда у них развилась способность к саморепликации. Предположительно, процесс, включающий предрасположенную к ошибкам репликацию, связывание и обмен простых элементов с формированием более сложных видов, и стал объектом естественного отбора. Можно представить, что вначале было много репликаторов, составленных из различных генетических элементов, которые примитивно реплицировались разными способами. Естественный отбор вступил в игру, когда эти репликаторы начали конкурировать за ресурсы, возможно, доступные химические строительные блоки, или когда условия изменились в пользу того или иного класса репликаторов. Эта ситуация могла вскрыть разницу в приспособленности форм репликации и благоприятствовать самым успешным формам, и, таким образом, осуществлять селекцию определенных репликаторов. Давайте на минуту представим себе, что доклеточные репликаторы являлись первыми, предковыми формами жизни. Но в таком случае как могли возникнуть вирусы? Согласно самой популярной гипотезе, они отделялись от этих более ранних предшественников по мере их структурного и функционального усложнения. Паразиты, скорее всего, возникли как неспособные к репликации элементы, которые тем не менее могли использовать химические свойства репликаторов, за счет чего им удавалось реплицироваться самим. После этого первичного становления паразитических отношений естественный отбор получил возможность независимо действовать как на паразитические, неавтономные, репликаторы, так и на автономные. Таким образом, сформировались две отдельные линии. Вероятно, очень смело предполагать, что паразитические неавтономные репликаторы, предшественники вирусов, на самом деле, начинали как члены популяции репликаторов, но отделились от них, утратив часть информации, что привело к появлению дефектных репликаторов, ставших облигатными паразитами, использующими те же механизмы, что и автономные репликаторы. По логике этого рассуждения мы должны заключить, что первые вирусы возникли как ранние предшественники жизненных форм, но утратили способность к автономной репликации и начали развиваться параллельно со своими хозяевами, которые в конечном счете приобрели весь тот антураж, который мы сегодня считаем жизнью.

Империя вирусов

Заканчивая введение, в котором вирусы представлены как эгоисты и носители чисто паразитической генетической информации, я должен отметить, что несмотря на то, что вирусы, на самом деле, являются косными во всех отношениях, они тем не менее уникальны в своей способности заново, в новом обличье, переделывать себя при каждом следующем инфицировании клетки-хозяина, и процесс этот начинается лишь с плана, закодированного в цепях ДНК или РНК. Живые клетки неспособны на такие подвиги. Несмотря на то что мы обычно ассоциируем естественный отбор с эволюцией живых организмов, вирусы, эти инертные биологические сущности, в конечном счете являются результатом естественного отбора, то есть они развивались вместе с жизненными формами и стали самыми многочисленными и разнообразными репликаторами на Земле. Как мы увидим, способность к быстрой эволюционной адаптации позволила вирусам проникнуть во все домены и царства жизни, где они стали мощными катализаторами эволюции своих хозяев. Это глубокое влияние на формирование и существование экосистем нашей планеты можно сравнить с влиянием великих империй прошлого, которые оказали глубокое воздействие на географию и культуру всего света. «Вирусная империя» может быть косной материей, неспособной к вдохновению в отсутствие помощи от живой клетки-хозяина, но нельзя недооценивать роль этой империи. Потенциал вирусов продолжать развитие в привычной эгоистичной манере, не задумываясь о судьбах человечества, сохраняется и сегодня. Для вирусов эта работа продолжается в своем бесконечном развитии.

Глава 2
Вирусы, гены и экосистемы

Наше подробное рассмотрение виросферы, приведенное в предыдущей главе, демонстрирует все изящество и сложность этих мельчайших переносчиков генетической информации. Тем не менее мы не коснулись разнообразного набора стратегий репликации и взаимоотношений вирусов с клетками-хозяевами и их популяциями. Ничего не было сказано и об эволюционных процессах, сформировавших вирусы, и о том, как вирусный метагеном повлиял на эволюцию живых организмов во всех доменах жизни, включая и экосистемы. Здесь мы постараемся восполнить этот пробел.

Начнем мы с самого многочисленного отряда вирусов, внесших самый весомый вклад в формирование вирусного метагенома, – отряда фагов. Эти вирусы обладают древними корнями и инфицируют самые примитивные, но доказавшие свою успешность генетические линии – бактерии и простейших. Благодаря давней истории своих взаимоотношений эти микроорганизмы представляют собой самые элегантные примеры совместной эволюции вирусов и живых клеток. Хочу еще раз пояснить, что на следующих страницах мы будем просто рассматривать мир вирусов и его отношения с живыми клетками в том виде, какой оно имеет в наше время. Вероятно, мы можем порассуждать о том, какими эти отношения были раньше, но не возьмемся предсказывать, какими они станут в будущем. Разнообразие вирусного метагенома, спрятанное в генетической «темной материи», – это строгое напоминание о том, что до сих пор существует множество возможностей для эволюционных изменений, катализируемых миром вирусов. Эти изменения будут проявляться ветвлениями самих вирусов, но, определенно, это ветвление и изменчивость затронут и их хозяев, и экосистемы, населенные этими хозяевами.

Образ жизни и жизненные циклы

За счет своей многочисленности в природной среде фаги играют важную роль в формировании глобальных экосистем. Это верно в отношении хвостатых фагов, содержащих двухцепочечную ДНК. Эти фаги составляют очень крупный и разнообразный порядок вирусов, метко названный Caudivirales (хвостатые вирусы). Хвостатые фаги с двойной цепью ДНК – это одна из старейших известных групп ДНК-содержащих вирусов. Эти вирусы, поражающие как бактерии, так и простейших (Krupovic et al., 2011), широко представлены в вирусных метагеномах всех известных на сегодняшний день экосистем. У всех этих вирусов общий геном, состоящий из двойной цепи ДНК, заключенной в крошечный икосаэдрический капсид диаметром меньше одной десятой микрометра, снабженный шиповидным выступом. Эта морфологическая особенность служит основанием для объединения всех этих вирусов в один порядок – Caudovirales. Эта группа невероятно разнообразна; гены со сходными функциями часто сильно отличаются по аминокислотному (так в тексте! вероятно, надо писать «нуклеотидному». – Прим. перев.) составу, который изменился по ходу эволюции от далеких общих предков. Более того, размер генома варьирует от менее чем 18 000 пар оснований, которых едва хватает на кодирование 30 белков, до почти полумиллиона пар оснований, которых вполне достаточно для кодирования 675 белков. Очень мелкие фаги кодируют лишь самое минимальное оснащение для репликации в клетке-хозяине. Эти мелкие фаги можно уподобить дрегстеру, которому для скорости оставлено только шасси, в то время как фаги с крупными геномами можно уподобить седанам представительского класса, снабженным самыми разнообразными дополнительными приспособлениями. Эти различия являются всего лишь результатом радикально отличающихся друг от друга траекторий эволюции в разных линиях фагов с двойными цепями ДНК, претерпевавших эту эволюцию в клетках разных хозяев. Отсюда мы можем заключить, что дополнительные гены в геномах более крупных фагов создавали для них какое-то конкурентное преимущество. Дополнительные функции, которыми они в результате стали обладать, видимо, улучшили репликативную успешность соответствующих фаговых линий в их индивидуальных нишах.

Caudovirales, древнейшие из фагов, инфицируют как автотрофных, так и гетеротрофных прокариот (Hendrix, Hatfull, Smith, 2003). Цианобактерии (ранее называвшиеся сине-зелеными водорослями), способные фиксировать углерод в процессе кислородного фотосинтеза, являются автотрофами и древнейшими из известных первичных продуцентов. Гетеротрофы зависят от первичной продукции других, автотрофных жизненных форм и пользуются продуцируемыми ими органическими соединениями для продукции собственной энергии. Отсюда следует, что эти фаги инфицировали общего прокариотического предка бактерий и простейших. Более того, нет ничего нелепого в предположении, что хвостатые фаги, присутствовавшие в океане, были первыми хищниками, истребителями прокариот. В ходе эволюции они появились определенно раньше, чем другие хищники, такие как одноклеточные жгутиковые и реснитчатые, которые в наши дни являются главными пожирателями автотрофов и гетеротрофов, населяющих наши океаны. Это отношение хищник – жертва между фагами и их хозяевами устояло в течение всей эволюции клеточной жизни. Пользуясь своей способностью к быстрой адаптации в условиях постоянно меняющегося давления отбора и реагируя на эволюционные изменения хозяев, фаги выработали широкий диапазон сложных и развитых отношений с клетками-хозяевами.

Некоторые хвостатые фаги, называемые литическими или вирулентными фагами, ведут себя просто как хищники прокариотических хозяев. После проникновения в клетку они быстро налаживают экспрессию своих собственных генов, которые захватывают управление метаболизмом клетки. Начинается синтез геномов и структурных белков фагов, происходит сборка вирусных частиц, и клетка-хозяин распадается (или лизируется), высвобождая сотни реплицированных вирусных частиц. В других случаях развиваются более утонченные типы взаимодействия. Инфицирующий фаг не сразу разрушает клетку, воздерживается от начала литического репликативного цикла и становится симбионтом клетки-хозяина, включив свою ДНК в хромосому клетки. Образующийся таким способом профаг, в спящем и безвредном для клетки состоянии, ведет себя как часть клеточной хромосомы и начинает реплицироваться только тогда, когда клетка начинает делиться. За эту услугу фаг платит клетке защитой от вторжения частиц других родственных фагов. Кроме того, геном фага может пополнить клеточный геном новой и полезной генетической информацией, что придает клетке новые свойства, имеющие конкурентное преимущество в сравнении с неинфицированными клетками. Естественный отбор действует на геномы фагов и их хозяев независимо, но после множества столкновений фага и хозяина развивается состояние мутуализма, которое часто приносит пользу и клетке, и вирусу. В этих условиях для обоих повышается вероятность выживания и продолжения генетической линии наследования.

Для того чтобы надлежащим образом интерпретировать сложные взаимоотношения вирусов с их прокариотическими хозяевами, нам надо рассмотреть процесс, с помощью которого фаги проникают в клетки хозяина и перестраивают его инфраструктуру. Естественно, фаги преследуют свою чисто эгоистическую цель – создать условия для беспрепятственной репликации. Такова главная директива вирусного генома, но такова же цель каждого гена и, на самом деле, всех генов живых сущностей. Фаги – это вирусы, которые инфицируют только прокариотические клетки, то есть одноклеточные организмы, лишенные ядра. Несмотря на то что это простейшие из существующих живых организмов, их фаги проявляют на удивление широкий спектр способов существования и стратегий инфицирования, каковой повторяется во всем мире вирусов. Исключительная взаимная приспособляемость хозяина и фага является результатом длительной истории совместной эволюции, подкрепляемой способностью фагов к быстрому усвоению генетических новшеств.

Согласно каноническому определению, вирус является «инфекционным агентом, в типичных случаях состоящим из молекулы нуклеиновой кислоты, одетой в белковую оболочку». Сам по себе инфекционный агент – это вирусная частица, сущность, которая, по наблюдениям Ивановского и Туорта, способна проходить через поры фарфорового фильтра (Bos, 1999; Twort, 1915). Эта частица является формой вируса, в которой он высвобождается из инфицированной клетки в окружающую среду; это просто нуклеопротеин, косный и инертный до тех пор, пока ему не представится случай инфицировать следующую клетку. Частица фага, томящаяся в окружающей среде слишком долго, инактивируется или просто разрушается под воздействием физических или химических факторов среды. Внутри капсида находится геном, состоящий из нуклеиновой кислоты, кодирующий информацию, которая может наследоваться, определяя вирус, его структуру и производимые им процессы. Белковый компонент вирусной частицы обладает двумя главными целями: 1) защита ценного содержимого от влияний окружающей среды, потому что чем дольше вирус и его генетический груз могут существовать в окружающей среде, тем больше шансов, что он сможет в конце концов инфицировать подходящую клетку; 2) белковая оболочка обеспечивает способность вирусной частицы прикрепляться к поверхности инфицируемой клетки и возможность проникновения вирусной хромосомы внутрь клетки-хозяина, в ее цитоплазму. За немногими исключениями, внутрь клетки проникает голый геном, а капсид сбрасывается и остается снаружи инфицируемой клетки. Каждый цикл репликации фага начинается с чистой генетической информации. Потомки вируса – это воссоздания исходного вируса, который строится по плану, начертанному на нуклеиновой кислоте вирусной частицы. Новые вирусы являются идентичными копиями своих родителей и, если отвлечься от генетических мутаций, направляющих ход эволюции, ведут себя совершенно одинаково.

Самые древние независимо развившиеся эгоисты, рассмотренные в главе 1, были всего лишь кодирующими информацию элементами, плававшими в первичном бульоне, которые оставались отделенными (но зависимыми) от других кодирующих информацию элементов (от которых зависела репликация первых). В какой-то момент предшественники одноклеточных организмов стали реплицироваться более успешно, используя для этого организованную структуру (Koonin, Martin, 2005; Woese, 2002). Вероятно, это предоставляло преимущества для клональной экспансии репликатора, так как позволяло иметь все необходимое для репликации в непосредственной близости, возможно, внутри отграничивающего слоя. Мы можем лишь спекулировать на тему того, что происходило в действительности, но представляется весьма вероятным, что предшественники вирусов эволюционировали параллельно со своими хозяевами. Возможно также, что они начинались как фрагменты дополнительных репликонов внутри этих структур, но в какой-то момент стали высвобождаться во внеклеточную среду. У них появилась «внеклеточная фаза». Получив способность к репликации, но без способности к самостоятельной автономной репликации, они стали паразитами. Теперь паразитам потребовался механизм для связывания с замкнутыми структурами и для проникновения в них.

Стоит поэтапно рассмотреть каскад событий, разыгрывающихся в процессе инфицирования хозяина вирусным паразитом. Молекулярные детали процесса различаются и варьируют в зависимости от конкретного вируса или хозяина, но все вирусные инфекции обладают некоторыми основными общими чертами: проникновением, репликацией и выходом. Мы начнем с проникновения. Эгоистичная генетическая информация нашего хвостатого вируса кодирует белки капсида и белки сборки хвоста. Белки капсида выстраивают защитную оболочку, в которой находится геном, а хвост служит средством введения генетической информации внутрь клетки-хозяина. Некоторые белковые компоненты хвоста, расположенные ближе к его концу, обладают молекулярным сродством к белкам поверхности клетки. Случайный контакт между белком хвоста фага и этим клеточным «рецептором» приводит к связыванию фага с клеточной поверхностью. Здесь работают те же физические принципы, которые лежат в основе взаимодействия антигена с антителом. Молекулярное взаимодействие приводит к образованию энергетически выгодного комплекса. Таким образом фаг оказывается в непосредственной близости от своей жертвы. Состоящий из множества белков хвост – сложная молекулярная машина, целью работы которой является доставка нуклеиновой кислоты, содержащейся в капсиде, в цитоплазму клетки. Аппарат хвоста нашего фага работает, как шприц, выдавливающий ДНК фаговой хромосомы в клетку. Эту последовательность связанных между собой событий, запускаемую первоначальным физическим взаимодействием вирусной частицы с клеточным рецептором, можно рассматривать как каскад событий с благоприятным термодинамическим исходом. Энергия, сохраненная в упорядоченной структуре вируса, используется для протекания процесса.

1
...