Читать книгу «Другая сторона медали. Современная история допинга» онлайн полностью📖 — Мадса Дранге — MyBook.
image

Итак, благодаря генетике мы наделены физиологическими и анатомическими особенностями, по отношению к которым часто употребляют не вполне научное понятие «талант». Уравнять возможности в этом случае мы пытаемся, вводя весовые категории в тяжелой атлетике и боевых видах спорта, возрастные категории в детском спорте, а также проводя соревнования по отдельности среди женщин и мужчин во всех видах спорта за исключением конкура. Причина, по которой пол, возраст и вес используются в качестве критериев, помогающих уравнять возможности спортсменов, заключается в том, что эти факторы имеют большое значение для спортивных результатов, а также в том, что их, в большинстве своем, несложно определить. Существуют и другие генетические различия, влияющие на возможности спортсменов, но разделить спортсменов на категории, исходя из других генетических предпосылок, было бы затруднительно по научным, этическим и практическим соображениям. Это касается даже тех случаев, когда речь идет о необычных генетических мутациях, которые потенциально могут обеспечивать спортсмену преимущество.

Финскому лыжнику Ээро Мянтюранта, завоевавшему золотые медали как на Олимпиаде в Скво-Вэлли в 1960 году, так и в Инсбруке в 1964-м, необычайно повезло с родителями. Благодаря генетической мутации, концентрация красных кровяных клеток в его организме была необычайно высокой. Если обычная норма для мужчин соответствует 13,5–16,5 грамма гемоглобина на децилитр крови (молекулы кислорода вступают во взаимодействие с красными кровяными клетками), то у Мянтюранта этот показатель соответствовал 20–24 граммам на децилитр. Данная мутация привела к тому, что рецепторы, с которыми взаимодействует эритропоэтин, гормон, контролирующий образование эритроцитов, то есть красных кровяных клеток, приобретают повышенную чувствительность. Из-за этого в организме формируется намного больше эритроцитов, а способность крови к кислородному обмену резко возрастает. Естественно, что у финского бегуна имелось явное физиологическое преимущество, которое, однако, привело к проблемам со здоровьем. Такая густая кровь может оказаться опасной, и большинству тех, кто страдает подобными заболеваниями, необходимо регулярно делать кровопускания, чтобы снизить риск возникновения тромбов[23].

Южноафриканка Кастер Семеня, специализирующаяся на дистанции 800 метров, – еще один пример того, как генетическая мутация может влиять на спортивные результаты. Ее особенность носит собирательное название «гиперандрогения». Причины его возникновения бывают разными, однако результатом всегда является избыточная секреция тестостерона. Тестостерон – гормон, регулирующий ряд процессов и присутствующий как в мужском, так и в женском организмах, но у мужчин его показатели значительно выше. Тестостерон отвечает, в частности, за мужские половые признаки и мышечную массу, поэтому для женщин с гиперандрогенией нередко характерны явно выраженные мышцы и избыточный рост волос на теле. Такое отклонение неопасно и встречается достаточно часто, но Семеня пришлось пережить немало неприятных эпизодов. Международная ассоциация легкоатлетических федераций (IAAF) посчитала несправедливым тот факт, что исключительных результатов Семеня добилась благодаря своей генетической особенности, и потребовала от спортсменки медикаментозной коррекции уровня тестостерона. Тем не менее требование IAAF было немедленно обжаловано в Спортивном арбитражном суде (CAS), постановившем, что подобное требование противоречит международным нормам[24].

Мы согласны принять даже самые крайние проявления генетически обусловленных различий, влияющие на спортивные результаты. Во-первых, заболевание или генетическая особенность возникают не по вине спортсмена, вынужденного переживать связанные с этим этические сложности, а во-вторых, никто, независимо от генетических особенностей, не рождается чемпионом. Одно дело – хорошие предпосылки, и совсем другое – научиться обращать их себе на пользу[25]. Кроме того, когда речь идет о выносливости и мышечной силе, существует еще один фактор, даже более важный, чем генетика, а именно, способность использовать, наверное, величайшее эволюционное достижение – невероятную способность человеческого организма приспосабливаться.

Тренировка

Милон Кротонский – один из наиболее знаменитых спортсменов античности. Он жил на побережье Адриатического моря (территория современной Италии) за 500 лет до нашей эры и с самого раннего возраста мечтал стать победителем Олимпиады в Афинах. Будучи юношей, он купил новорожденного теленка, которого таскал на плечах под палящим солнцем до тех пор, пока окончательно не выбивался из сил. Милон проделывал это упражнение ежедневно, год за годом. Теленок рос, но и Милон тоже, а когда теленок превратился в быка, Милон стал настоящим силачом.

Пример Милона еще раз доказывает, что человеческое тело способно приспосабливаться к внешним нагрузкам и что постепенное увеличение физической нагрузки укрепляет мышцы. Тренировка – это простой биологический механизм приспособления: если давать организму нагрузку, со временем он к ней привыкает. При этом нагрузку необходимо постепенно увеличивать, иначе этот эффект пропадет. Кроме того, между нагрузками организму необходимо отдыхать – в противном случае перенапряжение приведет к ухудшению показателей.

В целом принцип действия тренировок несложен: если достаточно часто бегать, то со временем сердце увеличится и начнет при каждом ударе перекачивать больший объем крови. Помимо этого, вокруг мышц станет больше мелких капилляров, так что приток кислорода к мышечным волокнам увеличится. Количество митохондрий (компонент клетки, в котором происходит синтез АТФ) тоже вырастет, так что общая способность тела вырабатывать энергию увеличится. В результате мы становимся более выносливыми и можем сохранять высокий темп бега дольше, чем до тренировок.

Так же дело обстоит и с силовыми тренировками. Если мы регулярно поднимаем тяжелые гири, мышцы привыкают к нагрузке, а их объем увеличивается – в основном потому, что существующие мышечные волокна увеличиваются в размерах, но также и благодаря образованию новых волокон. Нервная система также приспосабливается, так что вы приобретаете способность задействовать одновременно большее количество мышечных волокон, увеличивая таким образом и силу, с которой эти волокна сокращаются. Общим результатом этих процессов становится увеличение мышечной силы.

Эти механизмы достаточно простые, но тем не менее за последние 70 лет тренировка превратилась в настоящую науку. Профессиональный спорт развивается с невероятной быстротой, и теперь лучших от «почти лучших» отделяет уже не такая четкая грань, как в 1950-х. Основополагающие принципы тренировок изменились незначительно, но сейчас мы лучше понимаем, как можем избавиться от сдерживающих факторов, и поэтому тренировки стали намного сложнее, чем прежде.

Примером этого может служить тщательное планирование тренировок. До 1950-х тренировки проходили примерно одинаково, независимо от времени года. Тем не менее российский физиолог Лев Павлович Матвеев, проанализировав дневники советских легкоатлетов, тяжелоатлетов и пловцов, заметил важную деталь, характерную для победителей Олимпиад 1952 и 1956 годов: лучшие результаты показывали те, кто менял нагрузку в зависимости от времени года. На основании этих наблюдений Матвеев начал разрабатывать методику спортивных тренировок, основываясь на принципе периодизации. Он разделил год, отдельные сезоны и недели на несколько циклов с различной тренировочной нагрузкой и установил, каким образом при помощи так называемых круговых тренировок можно привести спортсмена в форму, которая обеспечит ему лучшие результаты на соревнованиях[26]. Так Матвеев усовершенствовал методику тренировок сперва в СССР, затем – в Восточной Германии, а потом и по всему миру. Расцвет спортивной физиологии пришелся на период Второй мировой войны. В это время были проведены исследования факторов, влияющих на выносливость и мышечную силу, а также изменений этих параметров в зависимости от возраста и пола и под влиянием заболеваний. Были разработаны приборы, измеряющие объем кислорода, потребляемого при физических нагрузках, и человечество ближе познакомилось с процессами, воздействующими на способность быстро бегать и поднимать тяжести. Помимо этого, ученые постепенно выяснили, каким образом организм приспосабливается к тренировкам и какие механизмы при этом работают. Главную роль в этих исследованиях сыграли научные сообщества Скандинавии и, в частности, такие ученые, как Пер-Улоф Остранд, Бенгт Салтин и Бьорн Экблум[27]. Благодаря полученным данным о реакции человеческого тела на физические нагрузки, методика тренировок также претерпела изменения. Усовершенствование основывалось на опыте, однако чем лучше мы понимаем особенности воздействия тренировок на организм, тем проще улучшать методы тренировки.

Выяснилось, например, что физиологический эффект тренировки на выносливость связан не только с главными факторами – в основном, со способностью сердца перекачивать кровь, но и с периферийными – в частности, со способностью мышц потреблять доставленный кислород. Некоторые факторы требуют тренировок, в которых нагрузка распределяется по-разному. Чтобы увеличить ударный объем сердца, необходимы интервальные тренировки с непродолжительными физическими нагрузками высокой интенсивности. Если же нужно, наоборот, повлиять на такие периферийные факторы, как количество митохондрий и капилляров в мышечных волокнах, для этого требуются более долгие, но менее интенсивные тренировки. Зная это, можно разработать индивидуальную программу тренировок, сочетающую различные методы и ориентированную на соответствующий вид спорта и данные конкретного спортсмена. При помощи напульсника возможно установить уровень лактата в крови во время тренировок и тем самым проверить правильность выбранных нагрузок с учетом желаемого результата.

Концентрация эритроцитов в крови также влияет на выносливость, но от тренировок не зависит. Тем не менее в этом случае можно прибегнуть к еще одному механизму приспособления: на формирование эритроцитов влияет атмосферное давление. При низком давлении, на больших высотах или в камере с разреженным воздухом (со сжатым воздухом) синтез эритропоэтина (ЭПО) увеличивается, и со временем это приводит к увеличению концентрации эритроцитов. По этой причине спортсмены, выступающие в циклических видах спорта, начинают тренироваться на больших высотах не только для того, чтобы акклиматизироваться перед соревнованиями, но также и для того, чтобы потом иметь преимущество на низких высотах, где поступление кислорода в организм выше.

Знание физиологии человеческого организма позволило также усовершенствовать методику тренировки мышечной силы. В результате различных экспериментов было установлено, как именно мышцы меняются в зависимости от различных форм нагрузки. Рост мышц – сложный процесс, который регулируется рядом гормонов и факторов роста, среди которых самую важную роль играют тестостерон, инсулин и гормон роста. Впоследствии ученым удалось определить два важнейших фактора, стимулирующих рост мышц, – механическое растяжение и метаболический стресс (ограниченный доступ к питательным веществам и кислороду). Благодаря этой информации изменились методы тренировок. Исследования показали, что силовые тренировки, целью которых является однократное увеличение силы, как, например, при толкании ядра и поднятии штанги, необходимо проводить с использованием больших тяжестей и с малым количеством повторов. Максимальные тяжести важны при тренировках упругости и силы, однако в скоростно-силовых видах спорта значительную роль играет также и время, поэтому в таких случаях необходимо использовать при тренировках низкие нагрузки, но повысить скорость движений.

Со временем спортивные физиологи, совершенствуя методы тренировок, стали обращаться к другим научным дисциплинам. Например, диетология позволяет нам понять, какие типы питания наилучшим образом влияют на человеческий организм при определенных видах деятельности, а также как правильно питаться, чтобы быстрее восстановиться между тренировками. В этой сфере до сих пор проводятся исследования, в которых физиологи изучают взаимосвязь между временем потребления энергии и особенностями питания, а также его количеством. Иными словами, когда именно нужно принимать пищу, что следует есть и сколько, для того, чтобы добиться лучшего эффекта от различного вида тренировок.

Биомеханика – еще одна дисциплина, которая при помощи анализа моделей движения и физиологических параметров помогает улучшить методику и технику тренировок. Практический пример – взмахи лыжными палками в лыжных видах спорта. В 2013 году ученые Норвежской академии спорта установили, что традиционная техника широких взмахов менее эффективна, чем короткие и частые взмахи. Раньше большинство считало широкие взмахи более эффективными, потому что чем дальше спортсмен отводит палку, тем острее угол между палкой и поверхностью и тем больше энергии переносится в направлении движения. Однако измерив силы, воздействующие на поверхность, и энергию, необходимую для того, чтобы повернуть тело в различных направлениях, ученые выяснили, что короткие и частые взмахи более эффективны: хотя при них меньше энергии прикладывается в направлении движения, спортсмен совершает не так много движений корпусом, и, таким образом, затрачивает меньше энергии. В итоге оказалось, что короткие взмахи приводят к лучшему результату, и вскоре норвежские спортсмены начали отрабатывать эту новую технику[28]. Впрочем, вскоре эту же технику стали осваивать лыжники в других странах, так что, если сравнить фотографии лыжников, сделанные до и после 2013 года, изменения очевидны.

Эти данные, полученные благодаря новым научным дисциплинам, позволяют постоянно улучшать полученный результат, а родственные дисциплины дали нам возможность улучшить методику тренировок, разработать различные методы в зависимости от вида спорта и даже учесть индивидуальные особенности и потребности спортсмена. Но неужели возможности тренировок безграничны?

Однозначный ответ на этот вопрос дать нелегко, так как спортивные результаты непросто разделить на отдельные, поддающиеся измерениям элементы – за исключением, конечно, результатов, полученных во время соревнований, но в этом случае результат отражает совокупное действие всех факторов. Лучший способ оценки – это наблюдение адаптивных изменений в организме, различных его тканях, что проявляется перестройкой их структуры и свойств. Необходимо, однако, учитывать, что результаты измерений могут быть неточными, а, кроме того, исходное состояние может быть различным у разных спортсменов. Тем не менее, в определенной степени, результаты таких оценок все же отражают влияние тренировок на физические способности спортсмена.

В написанной в 1984 году обзорной статье, автор которой проанализировал многочисленные исследования, посвященные соотношению массы мышц и их максимальной силы, говорится, что когда силовые тренировки начинает человек нетренированный, то в первое время его сила с каждой тренировкой будет увеличиваться на один процент. Но такая тенденция не продолжается бесконечно, и спустя много лет силовых тренировок человек достигает пика своих возможностей. Случаи, когда штангист международного уровня бьет собственные рекорды более чем на несколько процентов ежегодно, очень редки[29]. Анализируя зависимость размера мышц от тренировок, можно сказать, что у нетренированных людей мышцы увеличиваются на 3–25 % за 12 недель тяжелых силовых тренировок. При измерении мышечной массы в похожих исследованиях было выявлено увеличение на 2 килограмма за 14 недель. Такая тенденция со временем тоже прекращается, а кроме того, не все мышцы равномерно увеличиваются по массе, однако это свидетельствует о способности мышц человеческого тела к адаптации[30].

Что касается выносливости, ее тоже можно значительно повысить при помощи тренировок. Во-первых, тренировки на выносливость влияют на способность сердца перекачивать кровь. Это происходит, потому что размер сердца увеличивается, как и эластичность сердечной мышцы. Ударный объем тоже становится больше, в первую очередь потому, что между сердечными сокращениями в желудочки поступает больше крови (в диастолу), и так называемый конечный диастолический объем (объем желудочков сердца в конце диастолы) вследствие тренировок может увеличиться на 30 %. Тренировки влияют и на количество кровеносных капилляров, снабжающих кровью мышечные волокна. Проведенные исследования показывают, что у профессиональных спортсменов, занимающихся циклическими видами спорта, число таких капилляров в два раза больше, чем у нетренированных людей. Благодаря количеству капилляров и увеличенному ударному объему, у тренированных спортсменов, участвующих в циклических видах спорта, объем циркулирующей крови может быть на 1,5 литра больше, чем у нетренированных людей, сходных с ними по комплекции.

Благодаря механизму адаптации, не только увеличивается количество переносимого кровью кислорода – меняется также количество митохондрий в мышцах, то есть энергетическая «база» мышечных клеток, в которой вырабатывается аэробная энергия. Доказано, что за несколько месяцев эффективных тренировок на выносливость объем митохондрий можно увеличить почти на 100 %. Сумма всех этих периферических и центральных изменений приводит к тому, что потребление кислорода – возможно, наиболее точный показатель выносливости – у профессиональных спортсменов может составлять 6,5 литра в минуту, а у людей, прошедших обычные тренировки, составляет около 3,5 литра в минуту[31]