Капризы и увлечения модой могут отрицательно влиять на развитие нанотехнологий, но оборотной стороной увлечений является уже возникшая агрессивная реклама возможностей новых технологий, постоянное обещание быстрых и невиданных успехов, включая самые фантастические проекты (я обозначаю эту деятельность термином hype, которым в Америке называют беззастенчивую агитацию на выборах). Рекламная шумиха вокруг научных достижений возникала всегда, и обычно ее считают неизбежным побочным фактором технического прогресса, однако иногда она может стать серьезным препятствием на пути развития новых технологий (например, она может отвлекать внимание общественности и инвесторов от действительно интересных и важных идей и разработок).
Ответственный и серьезный исследователь всегда старается избегать участия в разработках, носящих рекламный или фантастический характер. Кроме того, настоящие ученые, хотя бы в общих чертах, хорошо знакомы с реальными возможностями существующих методик и поэтому не берутся за слишком общие и сложные задачи. Например, ответственный разработчик не будет даже пытаться быстро научить компьютер воспринимать обычную человеческую речь, так как прекрасно понимает, насколько сложна такая задача. Несмотря на огромные усилия и расходы, никому пока не удалось добиться ощутимых результатов в этом направлении, что, разумеется, нисколько не смущает создателей фантастических фильмов, в которых ЭВМ уже десятилетиями беседуют с людьми. Этот пример можно считать показательным для финансирования исследований, так как не обладающий техническими знаниями инвестор может вкладывать значительные средства во внешне эффектный проект с броским названием и привлекательной для публики идеей, оставив без внимания действительно ценную и перспективную разработку.
Аналитики известной фирмы Gartner, специализирующиеся на исследовании информационных технологий, разработали даже общую модель реализации и развития таких проектов, названных ими просто «циклами преувеличенных ожиданий». Для начала такого цикла обычно необходимо сочетание нескольких ярких технических достижений, играющих роль психологических «триггеров», то есть спусковых механизмов, вызывающих серьезный интерес и даже ажиотаж инвесторов. В истории нанотехнологии можно указать набор таких факторов, важнейшим из которых, по-видимому, явилось издание в 1986 году получившей весьма широкую известность книги Э. Дрекслера «Машины творения».
Образно говоря, сейчас в области коммерциализации технологий вообще (включая прогнозирование развития рынка и вложения венчурных капиталов) сложилась очень сложная и напряженная обстановка, которую можно сравнить с «горючей смесью», готовой вспыхнуть от небольшой искры, то есть от незначительных технических усовершенствований, ничтожного изменения условий и т. д. Для рынка этот цикл, скорее всего, будет означать безудержную рекламу и «раскрутку» того, что физики и техники называют «новым великим изделием» (эту роль в свое время сыграли лампочка накаливания, транзистор, персональный компьютер и т. п.). Серьезная опасность для развития нанотехнологий вообще состоит в том, что неправильный выбор приоритетов может привести к глубокому и долгому разочарованию в новых технологиях.
Не стоит преувеличивать мудрость и проницательность венчурных капиталистов, которые вполне могут ошибиться, особенно в критический, начальный период развития малоизвестных технологий. Как ехидно отмечал Дэвид Истмен, один ведущих экспертов крупной консалтинговой фирмы Prospector Equity Capital: «…у инвесторов есть дурная привычка подражать друг другу, в результате чего они часто начинают наперебой вкладывать капиталы в некоторые модные отрасли промышленности. Мы видели это на примере производства дисководов, оптических сетей связи и запоминающих устройств. Если в этой ситуации вложения не приносят быстрой прибыли, многие из инвесторов после 3–4 неудачных попыток быстро разочаровываются в инвестиционном бизнесе и перестают им интересоваться. При этом из-за собственной нетерпеливости они часто попадают в смешное положение, покидая созданные фирмы незадолго до того, как организуемое производство начинает приносить реальную прибыль».
Такие неудачи надолго отбивают у многих инвесторов желание заниматься инвестиционными проектами, не говоря уже о том, что создают крайне тяжелую ситуацию для основателей и технического персонала фирм. Очень часто исходного капитала хватает на первый этап развития, при котором удается довести лабораторные результаты до технологического уровня, и именно в этот ответственный момент молодая фирма отчаянно нуждается в новых капиталовложениях (на оформление документации и патентов, закупку оборудования и т. п.). Эта ситуация является довольно стандартной, и многие энтузиасты нанотехнологий уже неоднократно попадали в нее за последние годы.
Спасти растущую фирму в таких условиях может лишь умелая техническая и финансовая политика, привлечение новых инвесторов, а также энергичные поиски новых практических применений разработанных материалов и изделий. Последнее условие является очень важным, так как современное состояний нанотехнологий вообще характеризуется именно нарастанием числа приложений. Инновационная деятельность в этой области связана больше с нахождением сфер приложения, а не с обычными «войнами» на рынках сбыта традиционных товаров. Успех в развитии нанотехнологий обусловлен сочетанием научного таланта с энергичной предпринимательской деятельностью, а не с выискиванием мелких экономических выгод (например, с распространением старых музыкальных хитов по Интернету).
Следующим, менее драматичным, но очень важным этапом развития новых технологий, по мнению экспертов фирмы Gartner, выступает «закат эпохи Просвещения», выводящий производителей и потребителей на «плато производства», при котором новые идеи начинают приносить реальную прибыль. На этом этапе развития неизбежно появляются предупреждения об исчерпанности возможностей новых технологий, их неизбежной гибели и т. п., подобно тому как в развитии кремниевой полупроводниковой технологии был период мрачных прогнозов (начало 1990-х годов), закончившийся широким внедрением в практику новых материалов (арсенида галлия и т. п.).
Впрочем, поскольку нанотехнологии имеют дело с веществом в его самых фундаментальных формах (атомы и молекулы), сейчас не имеет смысла даже фантазировать о том, что ожидает нас на следующем витке развития прогресса.
Вообще говоря, общую картину развития нанотехнологий даже на ближайшее время сейчас трудно прогнозировать, не в последнюю очередь из-за очевидных сложностей с определениями и терминологией. Например, многие фирмы спокойно относят свои производства к нанотехнологическим, аргументируя тем, что в процессе изготовления они давно оперируют размерами точностью в несколько нанометров. В качестве наглядных примеров можно указать производство осциллоскопов (которые должны обладать полосой пропускания около 10 ГГц, для точной регистрации сигнала шириной 1 ГГц) и полупроводниковых устройств, которые давно добились нанометрической точности в некоторых производствах, где уже изготовляют детали толщиной всего 20 нм. Эта величина составляет всего 1/1000 толщины человеческого волоса, но является уже вполне разумной для промышленного производства, доказательством чего может служить обещание фирмы Intel достигнуть ее к 2012 году[14] во всех чипах для быстродействующих запоминающих устройств.
Некоторые специалисты настаивают на том, что к «настоящим» нанотехнологиям следует причислять не те, в которых обрабатываются нанометрические объекты, а лишь те, в которых на молекулярном уровне осуществляется реальный технологический контроль над размерами изготовляемых деталей. Рассмотрим, например, процесс создания углеродных нанотрубок, представляющих собой просто цилиндрические образования из пятиугольных колец диаметром около 1 нм. Должны ли мы формально причислять их к нанотехнологическим материалам, если процесс синтеза контролируется лишь в самых общих чертах? Строго говоря, мы можем утверждать, что умеем производить новый материал лишь тогда, когда научимся управлять молекулярным процессом синтеза нанотрубок и будем способны выращивать из них, например, монолитные изделия со степенью точности, уже достигнутой в полупроводникой технике. Представляется очевидным и справедливым, что реально говорить о создании новых технологий мы сможем лишь после того, как научимся не только применять, но и строго контролировать точность используемых процессов. Ради справедливости стоит отметить, что за последнее время в этом направлении достигнут замечательный прогресс, о котором раньше нельзя было и мечтать. Например, в ноябре 2004 года появились сообщения о возможности использования искусственных молекул ДНК для ориентации углеродных нанотрубок и создания на этой основе устройства типа транзистора[15]. Важным фактором современного этапа развития выступает эффект, который физики называют синергией, то есть взаимным усилением воздействия разнородных факторов или методик. Например, это может означать применение методов молекулярной инженерии не в биологии, а для совершенно новых целей и процессов.
Более того, некоторые фирмы-производители уже преодолели сложности научно-конструкторских разработок и готовы перейти к коммерческому производству новых материалов и продуктов. Например, известная южнокорейская фирма Samsung объявила о скором массовом выпуске изделий следующего поколения с использованием углеродных нанотрубок. В частности, фирма уже создала прототип нового типа плоского телевизионного экрана (известного под названием «дисплей с полевой эмиссией») и собирается в ближайшее время запустить его в производство[16]. В новом устройстве очень большая решетка высокоточных и компактных электронных излучателей будет обеспечивать свечение экрана с исключительно высокой точностью и яркостью, значительно превосходящей существующие аналоги плоских экранов. Кроме того, фирма обещает значительно снизить энергопотребление новых типов телевизоров.
Тем самым фирма Samsung бросает вызов своим конкурентам, которые должны либо быстро начать агрессивную политику инвестиций в развитие аналогичных технологий, либо заранее смириться с поражением. Читателю можно напомнить историю с положением дел в радиоэлектронике начала 1960-х годов, когда фирмы Sony и Panasonic первыми выпустили на рынок карманные транзисторные приемники, ставшие позднее символом технической революции в области полупроводников[17]
О проекте
О подписке