Читать книгу «Философские и психологические основы дидактики (на примере обучения химии)» онлайн полностью📖 — Лилии Михайловны Кузнецовой — MyBook.
image

Глава I
Структура и формы научного знания

Знание – сила.

Ф. Бэкон

Школьные учебные предметы являются, по образному выражению В. В. Давыдова, своеобразной проекцией научного знания в область образования [43]. Поэтому важно осознать содержание и структуру научного знания.

Научное знание имеет ряд характерных особенностей:

• они проникают за пределы ощущений;

• их истинность доказывается экспериментом;

• они обладают выводимостью, то есть одни выводятся из других, истинность которых уже доказана;

• сводятся в единую систему;

• обыденное знание и соответствующее умение составляют единство, научное знание и его применение (умение) всё больше и больше расходятся во времени [146].

Таким образом, научное знание отличается от обыденного тем, что характеризуется системностью, эмпирической доказательностью, логической обоснованностью.

Наука ориентирована на объективное исследование предметов и явлений действительности. Обыденное знание часто выражается в форме мнения.

Мнение – это мысль, суждение, предлагаемое без достаточных оснований, не подтверждённое доказательством [146]. Мнение нельзя считать научным знанием, так как его нельзя проверить эмпирически или доказать логически. Научное знание всегда доказательно. Мнение может стать знанием, если появляется возможность его проверки или доказательства. Таким образом, мнение можно считать мостиком между обыденным и научным знанием.

К сожалению, методические приёмы часто обосновываются мнением, а не дидактическими принципами, научно доказанными всей практикой обучения. Положение, что можно научить детей через объяснение учебного материала, является только кажимостью – искажённой видимостью, поверхностным взглядом на вещи [146], то есть мнением, не опирающимся на научные принципы.

Ненаучность методик, часто изобретаемых учителями, подтверждается тем, что она не всегда обоснована научными принципами. Существование множества учебников, отличающихся друг от друга главным образом предлагаемым порядком изучения материала и ограниченным только мнением автора, также не соответствует научным дидактическим принципам.

Для того чтобы поставить учебный процесс на научное основание, прежде всего требуется чётко определить сущность знания и его структуру, то есть то, что передаётся от поколения к поколению.

Знание – это идеальное образование в мышлении, являющееся результатом познания человечеством окружающего мира, это отражение действительности в мышлении человека [146].

К формам научного знания относят теории, законы, закономерности, принципы, понятия, суждения и умозаключения, факты. Эти формы находятся в определённых взаимосвязях и отношениях, образуя структуру научного знания. Под структурой знания следует понимать иерархию и взаимосвязь форм научного знания.

Взаимоотношения форм знания выразим схемой 2.

Схема 2. Структура знания


Как научное, так и учебное познание взаимосвязаны: объект познания науки и учебного процесса один – окружающая нас реальная действительность. Поэтому структура и формы научного знания аналогично отражаются в содержании учебных предметов. Чтобы учащиеся получили качественное образование, необходимо формировать у них как эмпирическое, так и теоретическое знание и соответствующее мышление. Кратко рассмотрим каждую из форм научного знания.

Теория

Теория является наиболее сложной и развитой формой научного знания, включающей в себя практику, факты, законы, принципы, понятия. Она возникает в процессе обобщения полученных знаний в эмпирических исследованиях. Эмпирическое исследование изучает явления на чувственном уровне и устанавливает зависимости между ними.

Явление – это форма объекта реальности, в которой эта реальность предстаёт перед человеческим познанием.

Научное исследование реальности обязано выявить сущность объекта.

Сущность – это внутреннее содержание объекта, то основное, что определяет объект, это существенные свойства, связи, противоречия и тенденции развития объекта[136].

В явлении сущностные связи не выявляются, «они как бы высвечиваются в явлениях, проступают через их конкретную оболочку» [147].

Теоретическое познание направлено на обнаружение существенных связей между явлениями внутри исследуемого объекта. Устанавливаются законы, которым подчиняется данный объект.

Задача теории как раз и заключается в том, чтобы воссоздать все эти отношения между законами и таким образом раскрыть сущность объекта.

В самом процессе исследования реальности можно выделить следующие этапы: возникновение проблемы – выдвижение гипотезы – доказательство гипотезы – обобщение полученных знаний – формулировка положений теории.

Теория – высшая, самая развитая форма научного знания, комплекс идей, представлений, взглядов, являющаяся результатом познания, отображающего закономерные и существенные связи в определённой области реальной действительности.

Теория является мыслительным отражением и воспроизведением реальной действительности в голове человека, которое в философии называют субъективным образом объективного мира. Несмотря на идеальный характер (существование в мыслях человека), теория отражает действительность более полно и более точно, чем эмпирическое знание. Она выражает предмет в его всесторонности и глубинной сущности. В силу этого теория помогает понять, осознать реальную действительность.

Подтвердим это примером, приведённым в психологической литературе [36]. Практикантам-геологам было дано задание описать геологический разрез. Среди геологов оказался бухгалтер, который составить описание не смог. Он воспринял разрез как крутой берег с обнажённым грунтом. Здесь проявилось широко известное явление, с которым каждый любознательный человек сталкивался в своей жизни: смотрим, но не видим (мозг не фиксирует внешний образ), слушаем, но не слышим (не можем вникнуть в услышанное в силу своей неосведомлённости).

Студенты-геологи выполнили описание в той или иной степени, руководствуясь научной теорией. Им было понятно содержание геологического обнажения: за отдельными слоями разных пород они видели историю возникновения минералов и пород, включения для них свидетельствовали об исторических периодах, в которые сформировались слои, и т. д., то есть они увидели больше стороннего наблюдателя, заметили всё то, что в зримом обнажении не представлено.

Приведём пример из истории химии [82]. Австрийские химики Л. Пебаль и А. Фрейнд изучали действие цинкметила на фосген. Они провели эксперимент, но понять его содержание не смогли.

Им не хватало теоретической основы, которая помогла бы исследователям осмыслить и оценить результат их эксперимента.

Знаменитый немецкий химик Ф. Вёлер так характеризовал ситуацию в органической химии, представлявшей собой множественность несистематизированных и не связанных между собой фактов: «Органическая химия может сейчас кого угодно свести с ума. Она представляется мне дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть». В письме к Ю. Либиху он писал: «Я полностью согласен с тобой, что для того, чтобы в естествознании понять факты, надо уже иметь в голове определённую идею…» [11].

Положение в органической химии стало изменяться после 1861 года, когда А. М. Бутлеров, утвердив свою теорию химического строения и руководствуясь ею, занялся получением изомера бутилового спирта. Для этого он воспользовался реакцией, в которой не смогли разобраться его австрийские коллеги. Бутлеров понял, что сначала фосген превращается в кетон (ацетон), затем образуется металлоорганическое соединение, на следующем этапе металлоорганическая группа замещается атомом водорода с образованием изобутилового спирта.

Теория помогла Бутлерову понять процесс превращений фосгена и привести этот процесс к определённой цели – выделить в качестве продукта изобутиловый спирт, то есть целенаправленно синтезировать изомер.

На этом примере видно значение теории в познании не только химии, но и окружающего мира вообще. Чем глубже человек познаёт природу с помощью теорий, тем бо́льшие возможности познания открываются перед ним.

В процессе усвоения школьниками учебного предмета теория является важным компонентом знаний. Она помогает ученику понять и объяснить явления окружающей его действительности, то есть сформировать ЗНАНИЕ и МЫШЛЕНИЕ. Этому придавали большое значение наши крупнейшие учёные-педагоги и методисты. Поэтому развитие методики учебных предметов шло в сторону введения теорий и приближения их к началу изучения учебного предмета.

Однако надо помнить, что всякая теория имеет ограничения, она применима в определённых рамках. Например, в химии теория валентных связей не может объяснить существование многих молекул, таких как O2, NO, NO2, HNO3 и др. Если предположить, что в молекуле кислорода две связи О=О, то нельзя объяснить существование двух неспаренных электронов в этой молекуле, следовательно, проявление реальных парамагнитных свойств кислорода. Зато это явление (парамагнетизм) объясняется другой теорией – теорией молекулярных орбиталей. Но в рамках этой теории нельзя определить число связей между атомами кислорода, а только возникновение четырёх связывающих и четырёх разрыхляющих орбиталей. На этих орбиталях находятся восемь связывающих и шесть разрыхляющих электронов. Два связывающих электрона не спарены, так как находятся на двух энергетически равноценных молекулярных орбиталях. Это и приводит к парамагнетизму молекулы. В связи с такими представлениями невозможно наглядно изобразить структурную формулу кислорода.

Точно так же невозможно в рамках теории валентных связей объяснить возникновение химических связей в молекуле азотной кислоты. Принято считать, что азот в этой молекуле четырёхвалентный. Но это утверждение вызывает неустранимое противоречие.

В самом деле, проанализируем предлагаемые в некоторых учебниках [34] модели (а, б) химических связей в молекуле HNO3:



Модель а показывает, что атом азота имеет три σ-связи и одну делокализованную π-связь, то есть является условно четырёхвалентным. Но обратим внимание на атом кислорода. Каждый из них имеет одну σ-связь и половину π-связи. Таким образом, кислород в азотной кислоте получается полуторавалентным, а это нонсенс.

Не лучше дело обстоит и с так называемой семиполярной связью (модель б). Согласно этой модели, азот образует четыре ковалентные связи и одну ионную. Так чему же тогда равна его валентность: четырём или пяти? Но самое главное заключается в том, что такая формула не отражает реальности. Атом азота имеет настолько высокую энергию ионизации (1402 кДж/моль), что сродства к электрону кислорода (141,8 кДж/моль) недостаточно для отнятия пятого электрона от атома азота. Поэтому представленная формулой б молекула азотной кислоты существовать не может.

Не следует прибегать к ухищрённости, чтобы определить валентность азота в азотной кислоте. Достаточно определить его степень окисления, чтобы понять поведение азотной кислоты в химических реакциях.

Желание все факты и явления объяснить с точки зрения единой теории, стремление любой ценой показать её неуязвимость вредит обучению, формирует у детей ненаучный подход к объяснению действительности.

Теорию валентных связей, как и любую другую теорию, следует применять в определённых границах. Не укладывающиеся в неё факты служат стимулом для развития теории или замены её другой. К этому надо относиться диалектически. Когда говорят «строго научно», противоречат существу науки, тому положению, что наука не является застывшим мыслительным образованием, но постоянно обновляется.

В обучении не следует ни игнорировать роль теорий, ни абсолютизировать их. Представление о том, что теории не являются завершёнными формами познания, а меняются, расширяются, углубляются, положительно влияет на формирование мышления и мировоззрения ребёнка.