Прежде, чем перейти к более значимому труду, где Тьюринг действительно указал путь в будущее AI, зададимся вопросом: «Если тест оказался заблуждением, то как же в таком случае следует относиться к «Вычислительным машинам и разуму», где он изложен? При глубоком погружении в статью складывается непреодолимое ощущение, что перед нами образец джентельменского розыгрыша высокого класса, на который купились очень многие. Если читать статью в оригинале, то нельзя не заметить присутствие в ней британского юмора, не удается отделаться от впечатления о сознательной мистификации. Тьюринг провоцирует читателя, когда начинает с прямого вопроса: «Могут ли машины думать?», подцепив его таким образом на крючок, он в том же абзаце ловко заменяет этот вопрос на другой: «Может ли машина совершать действия, неотличимые от обдуманных действий?». Совершив эту очевидную подмену понятий, он нисколько не утруждает себя необходимостью доказывать тождество двух разных способностей – мыслить и имитировать мышление. Вот она, предпосылка к появлению систем, проходящих тест в конкурсе Loebner Prize и им подобных, которые могут лишь имитировать мышление, но никак не мыслить, поэтому-то они и не имеют никакого значения для развития AI. Странно, как же удавалось десятилетиями не замечать сознательной «мины» – намеренного отождествления двух совершенно разных способностей? Не признав статью розыгрышем, невозможно понять как такой трезвомыслящий человек как Тьюринг мог предложить столь поверхностный тест, основанный не на чем-то ином как на «Игре в имитацию».
Возникает естественный вопрос: «А не является ли сама статья игрой в имитацию?» В рассуждениях об имитации мышления он был не первым, еще Дени Дидро (Denis Diderot, 1713–1784) в «Философских мыслях» (1746) не без иронии написал: «Если мне покажут попугая, способного ответить на любой вопрос, то я без сомнения признаю его разумным существом». Что же до «Игры в имитацию», то была популярна в начале XIX века, в период Первой промышленной революции, которая породила не только новую моду, например на шляпы-цилиндры, форма которых адресует нас к паровой машине, но и тягу британских аристократов к науке и к разного рода интеллектуальным салонным развлечениям. По правилам этой игры две команды, разделенные ширмой, пытаются узнать что-то одна у другой друга посредством обмена записками.
Не только слово имитация, но и метод доказательства вызывают убеждение в том, что перед нами ни что иное как гениальная мистификация, здесь нарушена принятая в науке каноническая последовательность: от гипотезы к постановке задачи, а далее к доказательству. Вместо нее Тьюринг произвольным образом выбирает девять вольно подверстанных утверждений, из которых якобы следует, что создание думающей машины невозможно, а далее успешно опровергает их. И это доказательство? Наиболее серьезный из опровергаемых аргументов Тьюринг заимствовал у Ады Лавлейс, он изложен в записке, адресованной тем, кто пытались найти признаки разума в механической Аналитической машине Чарльза Беббиджа. Более детально о мыслях Ады Лавлейс относительно разумности Аналитической машины будет написано в Главе 3.
Трудно представить, чтобы Тьюринг не понимал слабости предложенной им модели рассуждений о думающей машине, конечно же, это была шутка. Однако приверженцы Сильного AI в нужный им момент превратили шутку в свой катехизис, можно удивляться тому, что философское сообщество тоже попалось на наживку и началась бесконечная схоластическая полемика о возможности или невозможности создания AI, превосходящего разум человека.
Преувеличенное внимание к «Вычислительным машинам и разуму» оставило в тени другую, куда более значимую для AI работу – отчет «Умная машинерия» (Intelligent Machinery, IM), написанный Тьюрингом раньше, в 1948 году. Тьюринг использовал названии не machine, переводимое как машина, а machinery, этому слову точнее соответствует устаревшее в русском машинерия, трактуемое в словарях как совокупность машин, механизмов, технического оборудования. Таким образом он не связывает себя с определенным типом машины. Научное достоинство этой работы подтверждается тем, что в роли ее заказчика выступила Национальная физическая лаборатория (NPL), где создавались не только первые британские компьютеры, но и атомная бомба. В этом труде нет никаких поводов, дающих апологетам Сильного AI пищу для праздномыслия. Сорок с лишним лет IM оставался внутренним документом NPL, роковым в его судьбе оказалось пристрастие к секретности англичан, они же, например, более полувека хранили в тайне проект Ultra и потерявший актуальность компьютер Colossus. Случись публикация IM раньше, эта работа наверняка заняла бы более высокое место в научном наследии Тьюринга, чем «Вычислительные машины и разум», а главное оказала бы позитивное влияние на развитие AI.
В IM Тьюринг гениально предсказал возможные направления в развитии AI, здесь он не занимается мыслительным эквилибристикой или вербальными доказательствами способности машины мыслить, напротив, он предельно строг и рационален. Заметим, что Тьюринг не ограничивает технические средства для IM компьютером, хотя уже тогда было хорошо известно, что такое цифровые компьютеры, над созданием которых он работал, начиная с 1944 года. Первым был Colossus, хотя и цифровой, но еще электронно-механический специализированный компьютер, предназначенный только для дешифровки немецких радиограмм. Алгоритмы, разработанные для него Тьюрингом, основывались на Байесовской теории вероятностей, возможно, это был первый случай практического применения этой теории. Сразу же после окончания войны Тьюринг выполнил для той же NPL эскизный проект «Предложение по электронному калькулятору» (Proposed Electronic Calculator), который был использован при построении английского компьютера-прототипа ACE (Automatic Computing Engine). Поученный в процессе разработки опыт пригодился английским ученым и инженерам в 1947 году при создании первого в мире цифрового программируемого компьютера EDSAC (Electronic Delay Storage Automatic Calculator).
В IM Тьюринг поражает своей прозорливостью: он обосновал возможность существования двух альтернативных подходов к созданию AI, и, как показало будущее, эта дихотомия оказалась верной на 100 %. Один из возможных подходов он назвал подходом «сверху вниз» (top down), его суть в прямом переносе человеческих знаний в машину, позже этот подход за способ передачи был назван символьным. Начиная с 1956 года символьный подход доминировал, он развивался с переменным успехом, пока не достиг предела своего совершенства в экспертных системах и инженерии знаний, но в конечном счете он оказался тупиковым.
Второй подход Тьюринг назвал «снизу вверх» (bottom up), он строится на качественно ином предположении, не имеющем столь древних философских корней. Реальные предпосылки к такому подходу впервые возникли у нейрофизиологов в 30-е годы прошлого века, их работы подтолкнули к мысли о машине, представляющей собой искусственно созданную нейронную сеть (Artificial Neural Network, ANN).
Деление возможных подходов к AI на два – на top down и на bottom up оказалось воистину провидческим, как почти все, что сделал Тьюринг за свою короткую жизнь. Действительно AI в последующем развивался независимо по указанным им альтернативным направлениям. Детальнее о каждом из двух – символьном и коннекционизме, о том, как складывалась их история на протяжении восьми десятилетий, мы расскажем в этой книге. Здесь же можно ограничиться замечанием о том, что символьный подход был востребован в 60–90-е годы. Неудивительно, ведь он обещал невероятно быстрые результаты без особых научных вложений, казалось, что для создания AI достаточно написать соответствующие программы для уже существующих или проектируемых компьютеров. И напротив, развитие коннекционизма в силу целого ряда объективных и субъективных причин, прежде всего из-за отсутствия нужной теории и технологий моделирования ANN, было отложено на несколько десятилетий. Однако в XXI веке ситуация развернулась на 180 градусов, символьный подход ушел в забвение и восторжествовал коннекционизм. На данный момент практически все известные внедрения AI основываются исключительно на коннекционизме. Он стал фундаментом всей индустрии AI, созданной за последние 10 лет, а примеры сохранившихся систем на базе символьного подхода во всем мире можно пересчитать по пальцам.
В главе 4 будет описана история символьного подхода к AI, а в главе 5 коннекционистского.
Остановимся на одной из причин, почему один из подходов оказался тупиковым, а у второго, во всяком случае так видится сейчас, перспективы ничем не ограничены. Создание работающих систем с AI связано с проблемой, схожей с той, которую немецкие психофизиологи обозначили в середине прошлого века, назвав ее Leib-Seele Problem или Psychophysisches Problem, в английский вошел перевод первого варианта Mind and BodyProblem, в русский же второго – Психофизиологическая проблема. Отношения между душой и телом играют центральную роль в современной медицине, психотерапии и психопатологии. Разумеется, с моделью мозга все гораздо проще, но принцип тот же, AI, как сознанию человека, нужна материальная оболочка, тело. В середине пятидесятых начались первые исследования в области символьного подхода к AI и тогда без каких-либо сомнений на роль тела назначили компьютеры, рассуждая следующим образом: мозг оперирует символами и компьютер оперирует символами, раз так, то почему бы и не вложить в него мыслительные способности (по Тьюрингу, сверху-вниз). Однако при этом не учли одной вещи, того, компьютер в том виде как он сегодня существует является программируемым устройством и инструментом для создания AI должно стать программирование. Программируемый мозг – нонсенс.
Нынешние компьютеры – прямые наследники тех, которые создавались в сороковые годы прошлого века с единственным желанием – автоматизировать трудоемкие процедуры расчетов и только, ничего иного от них и не ожидали. Но неожиданно оказалась, что путем перепрограммирования те же компьютеры можно использовать для решения множества иных задач.
Все существовавшие и существующие компьютеры строятся по одной из двух архитектур, созданных три четверти века назад. В подавляющем большинстве (99,9 %) по принстонской, которую не вполне справедливо называют фон-неймановской (ФНА). Неизмеримо меньшее число специализированных сигнальных процессоров созданы по альтернативной гарвардской архитектуре. Этими двумя архаичными на сегодняшний день решениями ограничено все разнообразие компьютерных архитектур. Их объединяет главное – программный принцип управления последовательным выполнением команд, в том и другим случае процессор отрабатывает записанную в память программу. В первом случае данные и программа хранятся в общей памяти, а во втором – раздельно. За семьдесят с лишним лет в ФНА внесены многочисленные усовершенствования, способствующие компенсации присущих ей врожденных недостатков – неспособности к распараллеливанию вычислений, ограничение пропускной способности канала процессор-память (проблема бутылочного горла) и других.
Программное управление известно с античных времен, о его использовании в автоматонах подробно рассказано в главе 3. На компьютеры его распространил Чарльз Беббидж, создав проект Аналитической машины, для этого он, с одной стороны, позаимствовал математические принципы разделения сложных расчетов на простые операции у Гаспара де Прони, а с другой, идею записи программы на перфокарты у Жозефа Жаккара, изобретателя ткацкой машины. Совмещение одного с другим позволило создать архитектуру Аналитической машины, предтечи ФНА. В компьютерах принципы программного управления Бэббиджа сохранились с небольшими модификациями, такими как условные и безусловные переходы и разного рода детали. В целом же нужно признать, что компьютер генетически непосредственно связан с простейшими автоматами. Это кажется весьма странным, но дистанция между Аналитической машиной Бэббиджа и ФНА не слишком велика.
Жизнь показала: рожденный считать – думать не может, попытки обнаружить хотя бы признаки интеллекта в программных системах, претендующих на эту способность, приводят к огорчающему выводу – любые потуги запрограммировать AI в конечном счете сводятся к построению систем, лишь обладающих внешними признаками AI. Очень похоже на известную максиму В. С. Черномырдина: «Хотели как лучше, а получилось как всегда». Этот печальный факт американский автор книг по истории и философии AI Памела МакКордак предложила называть «эффектом AI» (AI effect). Эффект AI обнаруживается во всех без какого-либо исключения программах, которые по замыслу авторов должны были бы демонстрировать наличие у них разума. При непредвзятом анализе в 100 % случаев обнаруживалось, что их поведение на самом деле псевдоразумно и имеет простое логическое объяснение. Как сказал один из виднейших специалистов в робототехнике Родни Брукс: «Магии AI нет, но есть обычные вычисления».
О проекте
О подписке