Here [in the eye] forms, here colours, here the character of every part of the universe are concentrated to a point; and that point is so marvellous a thing … Oh! marvellous, O stupendous Necessity—by thy laws thou dost compel every effect to be the direct result of its cause, by the shortest path. These [indeed] are miracles;…
In so small a space it can be reproduced and rearranged in its whole expanse. Describe in your anatomy what proportion there is between the diameters of all the images in the eye and the distance from them of the crystalline lens.
OF THE 10 ATTRIBUTES OF THE EYE, ALL CONCERNED IN PAINTING.
Painting is concerned with all the 10 attributes of sight; which are:—Darkness, Light, Solidity and Colour, Form and Position, Distance and Propinquity, Motion and Rest. This little work of mine will be a tissue [of the studies] of these attributes, reminding the painter of the rules and methods by which he should use his art to imitate all the works of Nature which adorn the world.
ON PAINTING.
Variability of the eye.
1st. The pupil of the eye contracts, in proportion to the increase of light which is reflected in it. 2nd. The pupil of the eye expands in proportion to the diminution in the day light, or any other light, that is reflected in it. 3rd. [Footnote: 8. The subject of this third proposition we find fully discussed in MS. G. 44a.]. The eye perceives and recognises the objects of its vision with greater intensity in proportion as the pupil is more widely dilated; and this can be proved by the case of nocturnal animals, such as cats, and certain birds—as the owl and others—in which the pupil varies in a high degree from large to small, &c., when in the dark or in the light. 4th. The eye [out of doors] in an illuminated atmosphere sees darkness behind the windows of houses which [nevertheless] are light. 5th. All colours when placed in the shade appear of an equal degree of darkness, among themselves. 6th. But all colours when placed in a full light, never vary from their true and essential hue.
OF THE EYE.
Focus of sight.
If the eye is required to look at an object placed too near to it, it cannot judge of it well—as happens to a man who tries to see the tip of his nose. Hence, as a general rule, Nature teaches us that an object can never be seen perfectly unless the space between it and the eye is equal, at least, to the length of the face.
Differences of perception by one eye and by both eyes (26-29).
OF THE EYE.
When both eyes direct the pyramid of sight to an object, that object becomes clearly seen and comprehended by the eyes.
Objects seen by one and the same eye appear sometimes large, and sometimes small.
The motion of a spectator who sees an object at rest often makes it seem as though the object at rest had acquired the motion of the moving body, while the moving person appears to be at rest.
ON PAINTING.
Objects in relief, when seen from a short distance with one eye, look like a perfect picture. If you look with the eye a, b at the spot c, this point c will appear to be at d, f, and if you look at it with the eye g, h will appear to be at m. A picture can never contain in itself both aspects.
Let the object in relief t be seen by both eyes; if you will look at the object with the right eye m, keeping the left eye n shut, the object will appear, or fill up the space, at a; and if you shut the right eye and open the left, the object (will occupy the) space b; and if you open both eyes, the object will no longer appear at a or b, but at e, r, f. Why will not a picture seen by both eyes produce the effect of relief, as [real] relief does when seen by both eyes; and why should a picture seen with one eye give the same effect of relief as real relief would under the same conditions of light and shade?
[Footnote: In the sketch, m is the left eye and n the right, while the text reverses this lettering. We must therefore suppose that the face in which the eyes m and n are placed is opposite to the spectator.]
The comparative size of the image depends on the amount of light (30-39).
The eye will hold and retain in itself the image of a luminous body better than that of a shaded object. The reason is that the eye is in itself perfectly dark and since two things that are alike cannot be distinguished, therefore the night, and other dark objects cannot be seen or recognised by the eye. Light is totally contrary and gives more distinctness, and counteracts and differs from the usual darkness of the eye, hence it leaves the impression of its image.
Every object we see will appear larger at midnight than at midday, and larger in the morning than at midday.
This happens because the pupil of the eye is much smaller at midday than at any other time.
The pupil which is largest will see objects the largest. This is evident when we look at luminous bodies, and particularly at those in the sky. When the eye comes out of darkness and suddenly looks up at these bodies, they at first appear larger and then diminish; and if you were to look at those bodies through a small opening, you would see them smaller still, because a smaller part of the pupil would exercise its function.
[Footnote: 9. buso in the Lomb. dialect is the same as buco.]
When the eye, coming out of darkness suddenly sees a luminous body, it will appear much larger at first sight than after long looking at it. The illuminated object will look larger and more brilliant, when seen with two eyes than with only one. A luminous object will appear smaller in size, when the eye sees it through a smaller opening. A luminous body of an oval form will appear rounder in proportion as it is farther from the eye.
Why when the eye has just seen the light, does the half light look dark to it, and in the same way if it turns from the darkness the half light look very bright?
ON PAINTING.
If the eye, when [out of doors] in the luminous atmosphere, sees a place in shadow, this will look very much darker than it really is. This happens only because the eye when out in the air contracts the pupil in proportion as the atmosphere reflected in it is more luminous. And the more the pupil contracts, the less luminous do the objects appear that it sees. But as soon as the eye enters into a shady place the darkness of the shadow suddenly seems to diminish. This occurs because the greater the darkness into which the pupil goes the more its size increases, and this increase makes the darkness seem less.
[Footnote 14: La luce entrerŕ. Luce occurs here in the sense of pupil of the eye as in no 51: C. A. 84b; 245a; I—5; and in many other places.]
ON PERSPECTIVE.
The eye which turns from a white object in the light of the sun and goes into a less fully lighted place will see everything as dark. And this happens either because the pupils of the eyes which have rested on this brilliantly lighted white object have contracted so much that, given at first a certain extent of surface, they will have lost more than 3/4 of their size; and, lacking in size, they are also deficient in [seeing] power. Though you might say to me: A little bird (then) coming down would see comparatively little, and from the smallness of his pupils the white might seem black! To this I should reply that here we must have regard to the proportion of the mass of that portion of the brain which is given up to the sense of sight and to nothing else. Or—to return—this pupil in Man dilates and contracts according to the brightness or darkness of (surrounding) objects; and since it takes some time to dilate and contract, it cannot see immediately on going out of the light and into the shade, nor, in the same way, out of the shade into the light, and this very thing has already deceived me in painting an eye, and from that I learnt it.
Experiment [showing] the dilatation and contraction of the pupil, from the motion of the sun and other luminaries. In proportion as the sky is darker the stars appear of larger size, and if you were to light up the medium these stars would look smaller; and this difference arises solely from the pupil which dilates and contracts with the amount of light in the medium which is interposed between the eye and the luminous body. Let the experiment be made, by placing a candle above your head at the same time that you look at a star; then gradually lower the candle till it is on a level with the ray that comes from the star to the eye, and then you will see the star diminish so much that you will almost lose sight of it.
[Footnote: No reference is made in the text to the letters on the accompanying diagram.]
The pupil of the eye, in the open air, changes in size with every degree of motion from the sun; and at every degree of its changes one and the same object seen by it will appear of a different size; although most frequently the relative scale of surrounding objects does not allow us to detect these variations in any single object we may look at.
The eye—which sees all objects reversed—retains the images for some time. This conclusion is proved by the results; because, the eye having gazed at light retains some impression of it. After looking (at it) there remain in the eye images of intense brightness, that make any less brilliant spot seem dark until the eye has lost the last trace of the impression of the stronger light.
We see clearly from the concluding sentence of section 49, where the author directly addresses the painter, that he must certainly have intended to include the elements of mathematics in his Book on the art of Painting. They are therefore here placed at the beginning. In section 50 the theory of the "Pyramid of Sight" is distinctly and expressly put forward as the fundamental principle of linear perspective, and sections 52 to 57 treat of it fully. This theory of sight can scarcely be traced to any author of antiquity. Such passages as occur in Euclid for instance, may, it is true, have proved suggestive to the painters of the Renaissance, but it would be rash to say any thing decisive on this point.
Leon Battista Alberti treats of the "Pyramid of Sight" at some length in his first Book of Painting; but his explanation differs widely from Leonardo's in the details. Leonardo, like Alberti, may have borrowed the broad lines of his theory from some views commonly accepted among painters at the time; but he certainly worked out its application in a perfectly original manner.
The axioms as to the perception of the pyramid of rays are followed by explanations of its origin, and proofs of its universal application (58—69). The author recurs to the subject with endless variations; it is evidently of fundamental importance in his artistic theory and practice. It is unnecessary to discuss how far this theory has any scientific value at the present day; so much as this, at any rate, seems certain: that from the artist's point of view it may still claim to be of immense practical utility.
According to Leonardo, on one hand, the laws of perspective are an inalienable condition of the existence of objects in space; on the other hand, by a natural law, the eye, whatever it sees and wherever it turns, is subjected to the perception of the pyramid of rays in the form of a minute target. Thus it sees objects in perspective independently of the will of the spectator, since the eye receives the images by means of the pyramid of rays "just as a magnet attracts iron".
In connection with this we have the function of the eye explained by the Camera obscura, and this is all the more interesting and important because no writer previous to Leonardo had treated of this subject_ (70—73). Subsequent passages, of no less special interest, betray his knowledge of refraction and of the inversion of the image in the camera and in the eye (74—82).
From the principle of the transmission of the image to the eye and to the camera obscura he deduces the means of producing an artificial construction of the pyramid of rays or—which is the same thing—of the image. The fundamental axioms as to the angle of sight and the vanishing point are thus presented in a manner which is as complete as it is simple and intelligible (86—89).
Leonardo distinguishes between simple and complex perspective (90, 91). The last sections treat of the apparent size of objects at various distances and of the way to estimate it (92—109).
General remarks on perspective (40-41).
ON PAINTING.
Perspective is the best guide to the art of Painting.
[Footnote: 40. Compare 53, 2.]
The art of perspective is of such a nature as to make what is flat appear in relief and what is in relief flat.
The elements of perspective—Of the Point (42-46).
All the problems of perspective are made clear by the five terms of mathematicians, which are:—the point, the line, the angle, the superficies and the solid. The point is unique of its kind. And the point has neither height, breadth, length, nor depth, whence it is to be regarded as indivisible and as having no dimensions in space. The line is of three kinds, straight, curved and sinuous and it has neither breadth, height, nor depth. Hence it is indivisible, excepting in its length, and its ends are two points. The angle is the junction of two lines in a point.
A point is not part of a line.
OF THE NATURAL POINT.
The smallest natural point is larger than all mathematical points, and this is proved because the natural point has continuity, and any thing that is continuous is infinitely divisible; but the mathematical point is indivisible because it has no size.
[Footnote: This definition was inserted by Leonardo on a MS. copy on parchment of the well-known "Trattato d'Architettura civile e militare" &c. by FRANCESCO DI GIORGIO; opposite a passage where the author says: _'In prima he da sapere che punto č quella parie della quale he nulla—Linia he luncheza senza ŕpieza; &c.]
1, The superficies is a limitation of the body. 2, and the limitation of a body is no part of that body. 4, and the limitation of one body is that which begins another. 3, that which is not part of any body is nothing. Nothing is that which fills no space.
If one single point placed in a circle may be the starting point of an infinite number of lines, and the termination of an infinite number of lines, there must be an infinite number of points separable from this point, and these when reunited become one again; whence it follows that the part may be equal to the whole.
The point, being indivisible, occupies no space. That which occupies no space is nothing. The limiting surface of one thing is the beginning of another. 2. That which is no part of any body is called nothing. 1. That which has no limitations, has no form. The limitations of two conterminous bodies are interchangeably the surface of each. All the surfaces of a body are not parts of that body.
Of the line (47-48).
DEFINITION OF THE NATURE OF THE LINE.
The line has in itself neither matter nor substance and may rather be called an imaginary idea than a real object; and this being its nature it occupies no space. Therefore an infinite number of lines may be conceived of as intersecting each other at a point, which has no dimensions and is only of the thickness (if thickness it may be called) of one single line.
HOW WE MAY CONCLUDE THAT A SUPERFICIES TERMINATES IN A POINT?
An angular surface is reduced to a point where it terminates in an angle. Or, if the sides of that angle are produced in a straight line, then—beyond that angle—another surface is generated, smaller, or equal to, or larger than the first.
OF DRAWING OUTLINE.
Consider with the greatest care the form of the outlines of every object, and the character of their undulations. And these undulations must be separately studied, as to whether the curves are composed of arched convexities or angular concavities.
The nature of the outline.
The boundaries of bodies are the least of all things. The proposition is proved to be true, because the boundary of a thing is a surface, which is not part of the body contained within that surface; nor is it part of the air surrounding that body, but is the medium interposted between the air and the body, as is proved in its place. But the lateral boundaries of these bodies is the line forming the boundary of the surface, which line is of invisible thickness. Wherefore O painter! do not surround your bodies with lines, and above all when representing objects smaller than nature; for not only will their external outlines become indistinct, but their parts will be invisible from distance.
Definition of Perspective.
[Drawing is based upon perspective, which is nothing else than a thorough knowledge of the function of the eye. And this function simply consists in receiving in a pyramid the forms and colours of all the objects placed before it. I say in a pyramid, because there is no object so small that it will not be larger than the spot where these pyramids are received into the eye. Therefore, if you extend the lines from the edges of each body as they converge you will bring them to a single point, and necessarily the said lines must form a pyramid.]
[Perspective is nothing more than a rational demonstration applied to the consideration of how objects in front of the eye transmit their image to it, by means of a pyramid of lines. The Pyramid is the name I apply to the lines which, starting from the surface and edges of each object, converge from a distance and meet in a single point.]
[Perspective is a rational demonstration, by which we may practically and clearly understand how objects transmit their own image, by lines forming a Pyramid (centred) in the eye.]
Perspective is a rational demonstration by which experience confirms that every object sends its image to the eye by a pyramid of lines; and bodies of equal size will result in a pyramid of larger or smaller size, according to the difference in their distance, one from the other. By a pyramid of lines I mean those which start from the surface and edges of bodies, and, converging from a distance meet in a single point. A point is said to be that which [having no dimensions] cannot be divided, and this point placed in the eye receives all the points of the cone.
[Footnote: 50. 1-5. Compare with this the Proem. No. 21. The paragraphs placed in brackets: lines 1-9, 10-14, and 17—20, are evidently mere sketches and, as such, were cancelled by the writer; but they serve as a commentary on the final paragraph, lines 22-29.]
Бесплатно
Установите приложение, чтобы читать эту книгу бесплатно
О проекте
О подписке