Читать книгу «Микробиология: конспект лекций» онлайн полностью📖 — Ксении Викторовны Ткаченко — MyBook.

3. Питательные среды и методы выделения чистых культур

Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.

1. Питательность. Бактерии должны содержать все необходимые питательные вещества.

2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.

3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.

4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

5. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред).

6. Стерильность (чтобы не было других бактерий).

Классификация питательных сред

1. По происхождению:

1) естественные (молоко, желатин, картофель и др.);

2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.);

3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений (солей, аминокислот, углеводов и т. д.).

2. По составу:

1) простые – мясопептонный агар, мясопептонный бульон, агар Хоттингера и др.;

2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон, желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта—Тароцци, среда Вильсона—Блера и др.

3. По консистенции:

1) твердые (содержат 3–5 % агар-агара);

2) полужидкие (0,15—0,7 % агар-агара);

3) жидкие (не содержат агар-агара).

4. По назначению:

1) общего назначения – для культивирования большинства бактерий (мясопептонный агар, мясопептонный бульон, кровяной агар);

2) специального назначения:

а) элективные – среды, на которых растут бактерии только одного вида (рода), а род других подавляется (щелочной бульон, 1 %-ная пептонная вода, желточно-солевой агар, казеиново-угольный агар и др.);

б) дифференциально-диагностические – среды, на которых рост одних видов бактерий отличается от роста других видов по тем или иным свойствам, чаще биохимическим (среда Эндо, Левина, Гиса, Плоскирева и др.);

в) среды обогащения – среды, в которых происходит размножение и накопление бактерий-возбудителей какого-либо рода или вида, т. е. обогащение ими исследуемого материала (селенитовый бульон).

Для получения чистой культуры необходимо владеть методами выделения чистых культур.

Методы выделения чистых культур.

1. Механическое разобщение на поверхности плотной питательной среды (метод штриха обжигом петли, метод разведений в агаре, распределение по поверхности твердой питательной среды шпателем, метод Дригальского).

2. Использование элективных питательных сред.

3. Создание условий, благоприятных для развития одного вида (рода) бактерий (среды обогащения).

Чистую культуру получают в виде колоний – это видимое невооруженным глазом, изолированное скопление бактерий на твердой питательной среде, представляющее собой, как правило, потомство одной клетки.

ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий

1. Особенности строения бактериальной клетки. Основные органеллы и их функции

Отличия бактерий от других клеток

1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.

2. В клеточной стенке бактерий содержится особый пептидогликан – муреин.

3. В бактериальной клетке отсутствуют аппарат Гольджи, эндоплазматическая сеть, митохондрии.

4. Роль митохондрий выполняют мезосомы – инвагинации цитоплазматической мембраны.

5. В бактериальной клетке много рибосом.

6. У бактерий могут быть специальные органеллы движения – жгутики.

7. Размеры бактерий колеблются от 0,3–0,5 до 5—10 мкм.

По форме клеток бактерии подразделяются на кокки, палочки и извитые.

В бактериальной клетке различают:

1) основные органеллы:

а) нуклеоид;

б) цитоплазму;

в) рибосомы;

г) цитоплазматическую мембрану;

д) клеточную стенку;

2) дополнительные органеллы:

а) споры;

б) капсулы;

в) ворсинки;

г) жгутики.

Цитоплазма представляет собой сложную коллоидную систему, состоящую из воды (75 %), минеральных соединений, белков, РНК и ДНК, которые входят в состав органелл нуклеоида, рибосом, мезосом, включений.

Нуклеоид – ядерное вещество, распыленное в цитоплазме клетки. Не имеет ядерной мембраны, ядрышек. В нем локализуется ДНК, представленная двухцепочечной спиралью. Обычно замкнута в кольцо и прикреплена к цитоплазматической мембране. Содержит около 60 млн пар оснований. Это чистая ДНК, она не cодержит белков гистонов. Их защитную функцию выполняют метилированные азотистые основания. В нуклеоиде закодирована основная генетическая информация, т. е. геном клетки.

Наряду с нуклеоидом в цитоплазме могут находиться автономные кольцевые молекулы ДНК с меньшей молекулярной массой – плазмиды. В них также закодирована наследственная информация, но она не является жизненно необходимой для бактериальной клетки.

Рибосомы представляют собой рибонуклеопротеиновые частицы размером 20 нм, состоящие из двух субъединиц – 30 S и 50 S. Рибосомы отвечают за синтез белка. Перед началом синтеза белка происходит объединение этих субъединиц в одну – 70 S. В отличие от клеток эукариотов рибосомы бактерий не объединены в эндоплазматическую сеть.

Мезосомы являются производными цитоплазматической мембраны. Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек, в форме петли. Мезосомы связаны с нуклеоидом. Они участвуют в делении клетки и спорообразовании.

Включения являются продуктами метаболизма микроорганизмов, которые располагаются в их цитоплазме и используются в качестве запасных питательных веществ. К ним относятся включения гликогена, крахмала, серы, полифосфата (волютина) и др.

2. Строение клеточной стенки и цитоплазматической мембраны

Клеточная стенка – упругое ригидное образование толщиной 150–200 ангстрем. Выполняет следующие функции:

1) защитную, осуществление фагоцитоза;

2) регуляцию осмотического давления;

3) рецепторную;

4) принимает участие в процессах питания деления клетки;

5) антигенную (определяется продукцией эндотоксина – основного соматического антигена бактерий);

6) стабилизирует форму и размер бактерий;

7) обеспечивает систему коммуникаций с внешней средой;

8) косвенно участвует в регуляции роста и деления клетки.

Клеточная стенка при обычных способах окраски не видна, но если клетку поместить в гипертонический раствор (при опыте плазмолиза), то она становится видимой.

Клеточная стенка вплотную примыкает к цитоплазматической мембране у грамположительных бактерий, у грамотрицательных бактерий клеточная стенка отделена от цитоплазматической мембраны периплазматическим пространством.

Клеточная стенка имеет два слоя:

1) наружный – пластичный;

2) внутренний – ригидный, состоящий из муреина.

В зависимости от содержания муреина в клеточной стенке различают грамположительные и грамотрицательные бактерии (по отношению к окраске по Грамму).

У грамположительных бактерий муреиновый слой составляет 80 % от массы клеточной стенки. По Грамму, они окрашиваются в синий цвет. У грамположительных бактерий муреиновый слой составляет 20 % от массы клеточной стенки, по Грамму, они окрашиваются в красный цвет.

У грамположительных бактерий наружный слой клеточной стенки содержит липопротеиды, гликопротеиды, тейхоевые кислоты, у них отсутствует липополисахаридный слой. Клеточная стенка выглядит аморфной, она не структурирована. Поэтому при разрушении муреинового каркаса бактерии полностью теряют клеточную стенку (становятся протопластами), не способны к размножению.

У грамотрицательных бактерий наружный пластический слой четко выражен, содержит липопротеиды, липополисахаридный слой, состоящий из липида А (эндотоксина) и полисахарида (О-антигена). При разрушении грамотрицательных бактерий образуются сферопласты – бактерии с частично сохраненной клеточной стенкой, не способные к размножению.

К клеточной стенке прилегает цитоплазматическая мембрана. Она обладает избирательной проницаемостью, принимает участие в транспорте питательных веществ, выведении экзотоксинов, энергетическом обмене клетки, является осмотическим барьером, участвует в регуляции роста и деления, репликации ДНК, является стабилизатором рибосом.

Имеет обычное строение: два слоя фосфолипидов (25–40 %) и белки.

По функции мембранные белки разделяют на:

1) структурные;

2) пермиазы – белки транспортных систем;

3) энзимы – ферменты.

Липидный состав мембран непостоянен. Он может меняться в зависимости от условий культивирования и возраста культуры. Разные виды бактерий отличаются друг от друга по липидному составу своих мембран.

3. Дополнительные органеллы бактерий

Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Функционально они различны. Различают комон-пили и секс-пили. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они характерны для грамположительных бактерий. Секс-пили обеспечивают контакт между мужскими и женскими бактериальными клетками в процессе конъюгации. Через них идет обмен генетической информацией от донора к реципиенту. Донор – мужская клетка – обладает секс-пили. Женская клетка – реципиент – не имеет секc-пили. Белок секс-пили колируется генами F-плазмиды.

Жгутики – органеллы движения. Есть у подвижных бактерий. Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок – флагелин. Количество и расположение жгутиков может быть различным.

Различают:

1) монотрихи (имеют один жгутик);

2) лофотрихи (имеют пучок жгутиков на одном конце клетки);

3) амфитрихи (имеют по одному жгутику на каждом конце);

4) перитрихи (имеют несколько жгутиков, расположенных по периметру).

О подвижности бактерий судят, рассматривая живые микроорганизмы, либо косвенно – по характеру роста в среде Пешкова (полужидком агаре). Неподвижные бактерии растут строго по уколу, а подвижные дают диффузный рост.

Капсулы представляют собой дополнительную поверхностную оболочку. Они образуются при попадании микроорганизма в макроорганизм. Функция капсулы – защита от фагоцитоза и антител.

Различают макро– и микрокапсулы. Макрокапсулу можно выявить, используя специальные методы окраски, сочетая позитивные и негативные методы окраски. Микрокапсула – утолщение верхних слоев клеточной стенки. Обнаружить ее можно только при электронной микроскопии. Микрокапсулы характерны для вирулентных бактерий.

Среди бактерий различают:

1) истиннокапсульные бактерии (род Klebsiella) – сохраняют капсулообразование и при росте на питательных средах, а не только в макроорганизме;

2) ложнокапсульные – образуют капсулу только при попадании в макроорганизм.