Читать книгу «Руководство по спортивной медицине» онлайн полностью📖 — Коллектива авторов — MyBook.
image

1.2. Энергетика мышечной работы

Мышечную массу туловища составляют поперечнополосатые мышцы. Они являются самой объемной тканью тела человека, достигая у мужчин 50 % массы тела. Их деятельность контролируется сенсорными участками коры головного мозга и подкорковых центров движения.

Реализация движений и локомоций является основной функцией поперечнополосатых мышц. Кроме того, они являются самым крупным генератором биологической энергии в силу своей массы и выполняют функцию «второго сердца», способствуя возврату венозной крови в правое сердце, пропульсивно воздействуя на стенку периферических вен.

Все это в еще большей степени подчеркивает значимость движений для жизнедеятельности организма. Поперечнополосатые мышцы подвержены возрастной инволюции – устариков доля мышечной ткани уменьшается до 27 %, снижается тонус мышц и резко падает объем двигательной активности. С этим связано уменьшение роли мышц как генератора энергии и снижение выполняемой роли «второго сердца», что приводит к отекам, застоямит.д.

Коэффициент полезного действия (КПД) мышечной работы очень велик – 37 – 65 %. Энергия мышечного сокращения расходуется на изменение пространственного взаимоотношения сократительных белков.

Мышечная клетка. Наиболее значимыми белковыми фракциями мышечной клетки являются:

– белки миогеновой группы – в основном ферменты гликолиза и миоальбумин;

– миоглобин – красный хромопротеид, «родной брат» гемоглобина, определяющий красный цвет мышечной ткани; он содержит в своем составе свободный, легко окисляемый атом железа, связывает и транспортирует кислород в пределах цитоплазмы клетки;

– глобулины – ферменты и запасные белки, способные при тренировке преобразовываться в сократительные белки миофибрилл;

– миофибриллярные белки: миозин и актин, ферменты и др.;

– ядерные белки – нуклеопротеиды.

Наиболее значимыми из энергетических фракций являются такие водорастворимые азотистые соединения, как АТФ (0,25 – 0,4 % от сухого остатка клетки) и креатининфосфат (КрФ) – 0,4 – 1,0 % от сухого остатка клетки.

К важнейшим безазотистым энергетическим фракциям относится гликоген, который может составлять до 2 % сухого остатка клетки. Он может находиться в свободном и связанном состоянии, причем физическая тренировка значительно увеличивает количество свободного гликогена, что существенно повышает сократительную способность миофибрилл. Кроме этого, в механизме мышечного сокращения играют роль жиры, холестерин и минеральные соли.

Из других включений в цитоплазму клетки обращают на себя внимание митохондрии (митохондриальные кристы). Молекулярные биологи считают, что в них происходит аэробный синтез АТФ и синтез белков. В мембранах митохондриальных крист очень высок электрохимический потенциал ионов водорода, что позволяет рассматривать их как дополнительный источник внутриклеточной энергии, обеспечивающий эффективность перехода электролитов через клеточную мембрану.

Располагающиеся на клеточной мембране миоцита разноименно заряженные ионы металлов (калия, кальция, магния, натрия, кремния и др.) определяют работу «ионных мембранных насосов».

Мышечные волокна. Мышечные клетки структурно организованы в мышечные волокна. Общеизвестны два вида мышечных волокон (о них мы упоминали выше). Это белые мышечные волокна, называемые еще «быстрыми», и красные мышечные волокна – «медленные».

Белые волокна первыми откликаются на команду к деятельности со стороны центральной нервной системы (ЦНС), играя роль своеобразного стартера. В них преимущественно развиты анаэробные процессы ресинтеза АТФ, основным способом энергообеспечения является анаэробный гликолиз, который протекает в них с более высокой скоростью. Также белые волокна характеризуются относительно низким количеством митохондрий и миоглобина, высокой активностью миозиновой трифосфатазы, высокой буферной емкостью и хорошо развитым СПР. Они приспособлены к мощной, взрывной работе в короткий промежуток времени.

Красные мышечные волокна включаются в работу позднее белых, когда к тому возникнут определенные условия метаболизма. В этих волокнах низкая скорость гликолиза, но высокая интенсивность тканевого дыхания, высокое содержание миоглобина и митохондрий, низкая активность миозиновой АТФазы, низкая буферная емкость, значительно хуже развит СПР. Красные волокна предназначены для выполнения работы легкой либо умеренной мощности, но в течение длительного времени. При необходимости работа может выполняться часами.

Наличие красных и белых волокон в организме человека – фактор генетически обусловленный, тренировками ничего изменить нельзя. Образно говоря, всех людей на земле можно разделить на «спринтеров», у которых преимущественно развиты белые волокна и которыми легче переносится работа мощная и кратковременная, и «стайеров» – у них преимущественно развиты красные волокна, ими легче переносится работа маломощная и длительная. Именно этот факт лежал в основе выявления детей, предрасположенных к успехам в конкретных видах спорта.

Регуляция мышечного функционирования. Отмечается строгая последовательность смены энергетических реакций. Как только емкостные характеристики определенной реакции исчерпываются на 50 %, начинает разворачиваться следующая реакция. Некоторое время обе реакции работают вместе, затем первая прекращается и биоэнергетическое обеспечение мышечной деятельности осуществляется за счет второй реакции. Когда и эта реакция исчерпает свои емкостные характеристики на 50 %, начинает разворачиваться следующая по счету. Они также какое-то время работают вместе, затем вторая реакция угасает и биоэнергообеспечение мышечной деятельности идет за счет третьей реакции.

Выделившаяся в ходе гидролиза АТФ энергия расходуется на изменение пространственного взаимоотношения сократительных белков. По современным представлениям молекулярной биологии, при мышечном сокращении происходит повторяющееся образование и разрушение спаек между миозиновыми молекулами миозина и актина.

Расщепление АТФ в мышце происходит с очень большой скоростью – до 10 мкмоль/мин на 1 г мышцы.

1.2.1. Реакция гидролиза аденозинтрифосфорной кислоты

В анаэробных условиях АТФ вступает в гидролитическое расщепление:


где E – энергия.

Образовавшиеся в ходе гидролиза аденозиндифосфорная кислота (АДФ) и фосфорная кислота (H3PO4) служат в дальнейшем продуктами для синтетических процессов. Выделившаяся энергия преобразуется в механическую работу. АТФазная энергия обеспечивает такие виды спорта, как спринт, гольф, теннис.

Накапливать большее количество АТФ мышца не может. Между тем и минимальное количество АТФ не может опускаться ниже генетически определенного уровня. Если такое произойдет, то случится поломка «кальциевого насоса», и мышца будет сокращаться вплоть до полного исчерпания всех запасов АТФ и развития состояния стойкого мышечного сокращения.

Запасов АТФ в мышце обычно хватает для энергетического обеспечения 3 – 4 одиночных сокращений максимальной силы, т. е. на 0,5 – 1,0 с работы.

Тем не менее значительного снижения концентрации АТФ не происходит. Это объясняется тем, что по ходу работы АТФ восстанавливается из продуктов распада с той же скоростью, с которой она расщепляется. Для ресинтеза АТФ из продуктов ее распада необходима энергия.

АТФ в митохондриях образуется в цикле Кребса, где ацетил-коэнзим А (ацетил-КоА) окисляется с участием кислорода до CO2 и образования АТФ. С помощью фермента-переносчика адениннуклеотидтранслоказы АТФ перемещается из митохондрий в цитозоль, где используется в различных метаболических реакциях.

В истории апробировались три способа возможного повышения уровня АТФ.

1. Во времена Первой мировой войны считали, что назначение в пищу фосфатов (4 г/сут) может улучшить физическое состояние человека. Позднее контролируемые клинические исследования не подтвердили эффективности фосфатной нагрузки.

2. Введение инозина (аденозина, рибоксина). Также не имеет смысла, так как дефицита и излишков АДФ и аденозинмонофосфорной кислоты (АМФ) в клетке не наблюдается. У спортсменов применение инозина не влияло на аэробные возможности и ухудшало анаэробные. Инозин метаболизируется в мочевую кислоту и приводит к гиперурикемии. При внутривенном введении рибоксин распадется в доли секунды практически в месте инъекции.

3. Введение экзогенной АТФ составляло основу метаболической терапии в 60 – 80-х гг. прошлого столетия. Так как в клетке используется только митохондриальная АТФ, попытки улучшить мышечный метаболизм за счет введения экзогенной потерпели неудачу.

1.2.2. Ресинтез аденозинтрифосфорной кислоты в миокиназной реакции

Миокиназная реакция происходит в мышцах при значительном увеличении концентрации АДФ в цитоплазме клетки. Такая ситуация возникает при выраженном мышечном утомлении, когда скорость процессов ресинтеза АТФ не уравновешивает скорость ее гидролиза. С этой точки зрения миокиназную реакцию можно рассматривать как аварийный механизм, обеспечивающий ресинтез АТФ в условиях, когда его невозможно осуществить другим путем:



При усилении миокиназной реакции часть образующейся АМФ может необратимо дезаминироваться и выводиться из сферы энергетического обмена. Это очень невыгодно организму, поскольку дезаминирование АМФ ведет к уменьшению общих запасов АТФ в мышцах со всеми вытекающими отсюда последствиями. И, тем не менее, некоторое увеличение концентрации АМФ в цитоплазме оказывает активирующее влияние на ферменты гликолиза и тем самым способствует повышению скорости анаэробного ресинтеза АТФ.

1.2.3. Ресинтез аденозинтрифосфорной кислоты в креатининфосфатазной реакции

В спортивной биохимии креатининфосфатазную реакцию называют реакцией энергетического буфера, или реакцией перефосфорилирования:



где Кр – креатин.

В мышцах человека креатининфосфокиназа обладает большой активностью, а исходные вещества реакции – АДФ и КрФ – проявляют высокое химическое сродство, поэтому и начинается реакция параллельно с началом гидролиза. Наивысшей скорости эта реакция достигает уже ко второй секунде. Ферментативное обеспечение реакции активизируется ионами Ca и, как это ни странно, креатинином – конечным продуктом реакции, что предотвращает ослабление ее интенсивности.

Эта реакция первой включается в процесс ресинтеза АТФ и протекает со значительной интенсивностью до тех пор, пока не будут исчерпаны запасы КрФ в мышцах. Реакцией «энергетического буфера» она называется за то, что обеспечивает постоянство содержания АТФ в мышцах при резких перепадах в скорости ее использования.

Содержание КрФ в мышцах примерно в 3 раза превышает содержание АТФ. Общие запасы фосфогенов в мышцах обеспечивают мышечную работу с максимальной силой в течение 10 – 15 с. В первые секунды, пока концентрация КрФ в мышцах высока, активность креатининфосфокиназы поддерживается на высоком уровне, эта реакция вовлекает в процесс большую часть АДФ и этим блокирует развитие других биоэнергетических реакций. Только после того как запасы КрФ в мышцах будут исчерпаны на 50 % (пятая-шестая секунды работы), скорость реакции начинает уменьшаться и постепенно в процесс ресинтеза АТФ вступает гликолиз. Это происходит с увеличением продолжительности работы. К тридцатой секунде скорость реакции уменьшается в 2 раза, а к третьей минуте составляет лишь 1,5 % от ее первоначального значения.

Креатининфосфатазная реакция протекает без кислорода, она легко обратима. После прекращения работы, когда в мышцах появляется переизбыток АТФ, происходит реакция ресинтеза КрФ, приводящая к восстановлению его до исходного уровня.

...
5