Читать книгу «Океанография и морской лед» онлайн полностью📖 — Коллектива авторов — MyBook.
image



Отдельной и самой сложной задачей является подъем ПБС в условиях присутствия ледяного покрова. Особенно подъем затрудняется в случае наличия разреженных льдов, когда сделать майну при помощи судна не представляется возможным и становится высокой вероятность всплытия поверхностных буев под отдельно плавающие льдины. В случае наличия сплоченного льда подъем также представляет собой известные трудности, которые связаны с целым набором последовательно выполняемых действий. Первым является триангуляция и расчет точного положения либо придонных акустических размыкателей, либо специального позиционирующего акустического устройства (транспондера), устанавливаемого в верхней части станций. В условиях глубокого океана и присутствия течений горизонтальная разница положения этих двух элементов может составлять несколько десятков метров, а иногда и более сотни. После этого осуществляется расчет скорости и направления дрейфа льда, времени, необходимого на подготовку майны необходимого размера, и начинаются работы по ее формированию. При условии правильной оценки дрейфа, в момент прохождения майны над позицией ПБС с бортового акустического устройства передается сигнал размыкателю на всплытие (рис. 3).


Рис. 3. Подъем притопленной буйковой станции в условиях высокой сплоченности льда в районе постановки ПБС (а, б)


Наиболее интересные результаты могут быть получены при использовании профилографов, перемещающихся вдоль несущего троса ПБС. Пример записи изменений вертикального профиля температуры в северной части моря Лаптевых показан на рис. 4. В частности, благодаря использованию технологии профилирования удалось установить ряд интересных особенностей динамики и термохалинной изменчивости глубинной атлантической водной массы в этом районе и зафиксировать существенный рост температур в ядре Атлантических вод в 2003–2004 гг.


Рис. 4. Пример записи изменений вертикального профиля температуры в северной части моря Лаптевых по данным притопленной буйковой станции в период с 9 сентября 2003 г. по 6 февраля 2005 г.

Дрейфующие буйковые измерительные комплексы

Одним из перспективных направлений развития наблюдательной сети в СЛО является создание и поддержка системы автономных дрейфующих измерительных комплексов, выполненных на базе современных технических средств, позволяющих получать высокодискретные вертикальные профили гидрофизических характеристик в толще воды, осуществлять глобальное позиционирование, выполнять операции обмена данными с использованием спутниковых каналов связи. Впервые подобный подход был опробован в рамках совместного американо-канадско-японского проекта Beaufort Gyre Exploration Project (проект исследований в круговороте Бофорта). Специально для задач проекта был разработан научно-технический комплекс, получивший наименование ITP (Ice-Tethered Profiler). В период 2004–2005 гг. на дрейфующем льду моря Бофорта были установлены три прототипа ITP. Опыт эксплуатации прототипов (два из трёх сохраняли работоспособность в течение десяти месяцев с момента установки, передав на сервер разработчиков результаты профилирования температуры и солёности более чем в тысяче пунктов каждый, а также большой объём диагностической информации о состоянии прибора) позволил обосновать целесообразность дальнейшего развития проекта.

Комплекс ITP состоит из трёх основных компонентов: находящегося на поверхности льда буя, подвеса с концевым грузом и профилографа, перемещающегося в вертикальном направлении по подвесу (рис. 5). Буй представляет собой выполненный из пенопласта высокой плотности цилиндр, внутри которого размещен водонепроницаемый алюминиевый бокс с электронной аппаратурой. Набор аппаратуры включает в себя контроллер, индукционный модем, GPS-приёмник, оборудование спутниковой связи системы Iridium. Антенны GPS-приёмника и спутникового телефона размещены в верхней, выступающей за пределы пенопластового кожуха, части бокса и защищены прочным радиопрозрачным колпаком. Также в корпусе буя размещаются аккумуляторные батареи. Поздние модификации комплекса стали оснащаться пенопластовым конусом, призванным обеспечить бую дополнительную плавучесть, что позволяет производить установку на открытой воде. Конус устанавливается на лёд вершиной вниз, а на его основание монтируется блок с аппаратурой. К нижней части буя металлическим фланцем крепится кабель-трос подвеса. Кабель-трос совмещает функции направляющей движения профилографа и сигнальной линии. Для того чтобы подвес принимал вертикальное положение при значительных скоростях дрейфа, к его нижнему концу подвешивается груз весом около 100 килограмм. Верхние 5 метров кабель-троса защищены от механических воздействий льда уретановым рукавом. Кроме того, на нижнем конце рукава закреплена бронзовая контактная пластина, обеспечивающая коммуникационной схеме комплекса электрическую «землю». Перемещающийся по подвесу профилограф представляет собой пластиковый бокс цилиндрической формы, внутри которого размещены: измерительное оборудование Sea-Bird 41CP CTD, индукционный модем, электродвигатель, аккумуляторные батареи. Состав измерительного оборудования может быть расширен за счёт оснащения профилографа дополнительными датчиками. Профилограф монтируется на кабель-тросе через верхний и нижний направляющие ролики, а также ролик электродвигателя. Вращение плотно прижатого к тросу ролика электродвигателя и обеспечивает вертикальные перемещения профилографа. Коммуникационный обмен с поверхностным блоком осуществляется посредством индукционных модемов. Модем профилографа наводит в проводнике кабель-троса полезный сигнал, считываемый модемом, размещённым в корпусе буя. Заряда аккумуляторных батарей комплекса хватает не менее чем на два года непрерывной работы. Разворачивается комплекс с использованием специального оборудования силами трёх человек в течение трёх-четырёх часов.


Рис. 5. Схема (а) и процесс установки (б) элементов комплекса ITP


Начиная с 2006 года и по настоящее время на дрейфующих льдах Арктического бассейна ежегодно выставляется от трёх до двенадцати буёв ITP, а всего за рассматриваемый период в Арктике было задействовано тридцать восемь комплексов. Общее количество полученных профилей оценивается в тридцать тысяч.

На рис. 6 с цветовой дифференциацией по годам представлены пункты акватории Арктического бассейна, в которых было выполнено профилирование комплексами ITP. Как видно, наибольшая концентрация точек профилирования достигнута в акватории моря Бофорта, в соответствии с первоначальными целями проекта. Однако и в центральной части Арктического бассейна были задействованы двенадцать буёв ITP, в том числе в период МПГ в рамках российских арктических экспедиций на НЭС «Академик Федоров» были установлены в 2007 году пять комплексов, в 2008 году – 4 комплекса ITP.


Рис. 6. Положение пунктов в Арктическом бассейне СЛО, в которых с буев ITP выполнялось профилирование в период 2004–2010 гг.


Дрейфующие комплексы ITP являются автономными платформами, обеспечивающими регулярное поступление оперативной океанографической информации в течение всего года. Поздние модификации буёв выполняют термохалинное профилирование до шести раз в сутки. Наличие приёмника GPS позволяет рассматривать комплекс как источник информации высокого временного разрешения о характере дрейфа морского льда в месте нахождения буя. В случаях удачного выбора района постановки, когда льдина-носитель оказывается вовлечённой в продолжительный дрейф и в течение долгого времени не разрушается и не выносится из Арктического бассейна, комплекс ITP несколько лет может служить поставщиком океанографических данных (рис. 7).


Рис. 7. Пример записи изменений вертикального профиля температуры в приполюсном районе по данным ITP-буя № 14 в период с 13 сентября по 5 ноября 2007 г.


Накопленный опыт использования ITP позволил выявить и устранить ряд технологических недостатков, оптимальным образом реализовать заложенные на этапе проектирования комплекса идеи. Таким образом, можно считать, что наиболее затратный в экономическом отношении период опытной эксплуатации преодолён. Стоимость производства и развёртывания комплекса невелика в сравнении с затратами на организацию океанографических наблюдений с других платформ, таких как научно-исследовательские суда и дрейфующие станции. Конечно, ITP не обеспечивает комплексную регистрацию дополнительных параметров, характеризующих состояние снежно-ледяного покрова и атмосферы. Этот недостаток может быть устранён путём использования ITP в составе автономных дрейфующих обсерваторий, включающих также автоматические метеостанции, балансомерные ледовые буи и другое измерительное оборудование. Ввиду особенностей конструкции, обусловленных необходимостью адаптации комплекса к усреднённым характеристикам ледяного покрова и батиметрическим условиям на целевой акватории, ITP не может получать информацию о поверхностном слое воды до глубины 5–7 метров и выходить на мелководные участки Арктического бассейна. Тем не менее, с помощью ITP-комплексов может осуществляться мониторинг пространственного расположения струи Атлантических вод и термохалинных характеристик в их ядре. Поскольку совокупность перечисленных параметров определяет один из основных климатообразующих факторов арктического региона, дальнейшее развитие программы ITP на всей глубоководной части акватории СЛО представляется перспективным направлением научных исследований в Арктике.

Заключение

Подводя итог обзора автономных измерительных комплексов можно отметить, что если заякоренные комплексы нацелены в основном на изучение гидрологических процессов, то задачам мониторинга гидрофизического состояния СЛО в большей степени отвечают дрейфующие буйковые станции. Современные модификации дрейфующих комплексов позволяют осуществлять их постановку как на открытую воду, так и на дрейфующий лед. Наряду с этим надежность разработанных и уже используемых комплексов доказывает высокую экономическую эффективность их дальнейшего использования в Арктике вне зависимости от направленности климатических изменений и состояния ледяного покрова. Кроме этого дрейфующие буйковые станции являются единственными автономными платформами, обеспечивающими оперативное поступление океанографической информации в течение круглого года. В экономическом отношении они значительно выигрывают у дрейфующих ледовых станций, организация, обеспечение и эвакуация которых приводит к высоким финансовым затратам.

S.A. Kirillov[8], K.V. Filchuk[9]. The anchored and drifted observational platforms for continuous registration of seawater parameters in the Arctic Ocean

Аbstract

The anchored and drifted observational platforms are considered as the main autonomous techniques which gains information on hydrophysical state of the Arctic Ocean. The advantages and disadvantages of both methods are discussed along with the perspectives of their further using for the observational network in the Arctic.