Читать книгу «Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии» онлайн полностью📖 — Коллектива авторов — MyBook.
image

1.2. Устройство флуоресцентного микроскопа

Прототип флуоресцентного микроскопа был разработан в начале ХХ в. Августом Келлером, который при конструировании микроскопа использовал в качестве источника света дуговую кадмиевую лампу. Затем немецкий физик Генри Фридрих Зидентопф, работая в оптических мастерских Цейса (в 1907 – 1938 гг. директор лаборатории микроскопии), совместно с Рихардом Зигмонди изобрел (1903) щелевой ультрамикроскоп. Еще через восемь лет (1911) Oskar Heimstдdt сконструировал первый флуоресцентный микроскоп и применил его для исследования явления автофлуоресценции органических и неорганических объектов. Однако в то время было трудно добиться эффективного разделения флуоресцентного сигнала от возбуждающего света. Эта проблема была преодолена Philipp Ellinger и August Hirt в 1929 г., которым удалось разработать так называемый эпифлуоресцентный микроскоп. В предложенной ими конфигурации микроскопа освещение препарата и детекция флуоресцентного сигнала осуществлялась с одной стороны от образца, поэтому объектива достигал только отраженный возбуждающий и излучаемый свет. Прорыв в развитии флуоресцентной микроскопии связан с появлением лазеров (60-е гг. XX в.), с помощью которых удалось добиться высокой степени пространственной и временной когерентности светового пучка. Кроме того, стало возможным эффективно разделять сигналы, используя дихроичные зеркала.

Принципиальная схема современного флуоресцентного микроскопа представлена на рис. 1.

Свет от источника проходит через фильтр возбуждающего излучения. При этом из спектра выделяются только те компоненты, которые необходимы для возбуждения флуоресценции. Затем свет попадает на дихроичное зеркало (светоделитель). Отраженный светоделителем свет попадает в объектив флуоресцентного микроскопа и фокусируется на образце, возбуждая флуоресценцию. Флуоресцентный сигнал (смещенный в длинноволновую область (согласно Правилу Стокса)), а также рассеянное излучение возбуждения достигает светоделителя, но, в отличие от возбуждающего света, проходит через дихроичное зеркало, после чего рассеянное излучение отсеивается эмиссионным фильтром и на детектор попадает только излучение флуоресценции.

Источник возбуждающего света. В настоящее время используются три типа источников света: лампы высокой мощности (ртутные, ксеноновые и их аналоги), диоды и лазеры. Ртутная лампа – это газоразрядный источник света, в котором при электрическом разряде в парах ртути под высоким давлением возникает оптическое излучение преимущественно в ультрафиолетовой области спектра. Такие источники света являются малоэффективными, поскольку они производят большое количество избыточной тепловой и световой энергии по сравнению с энергией, требуемой для возбуждения флуоресценции. Флуоресцентные микроскопы могут быть укомплектованы ртутными лампами мощностью 50 – 200 W. Использование более мощной лампы позволяет возбудить с достаточной эффективностью даже слабый флуорохром, но при этом необходимо учитывать, что увеличение мощности лампы влечет за собой увеличение скорости выгорания флуорохромов.

Рис. 1. Принципиальная схема флуоресцентного микроскопа


В ксеноновой лампе вспышка происходит после ионизации газа и прохождении через него мощного импульса электрического тока, поданного на поджигающий электрод. В результате этого электроны в молекуле ксенона занимают орбиты с более высокими энергетическими уровнями и, возвращаясь на прежние орбиты, излучают энергию в виде фотонов. Ксеноновая лампа имеет непрерывный спектр излучения в широком спектральном диапазоне, что не всегда пригодно для возбуждения флуоресценции. Такие лампы обычно используют при работе с флуорохромами, требующими для возбуждения длинноволновый свет (красной и инфракрасной области).

Вместо ртутной или ксеноновой лампы можно использовать металлогалогенную лампу (metal halide lamp). Это газоразрядная лампа высокого давления. Внутри колбы размещается кварцевая или керамическая цилиндрическая горелка, в которой находятся галогениды некоторых металлов (йодиды натрия, таллия, индия и др.), инертный газ (преимущественно ксенон и аргон) и металлическая ртуть. При подаче на лампу питающего напряжения происходит зажигание дугового разряда, металл начинает испаряться, его атомы возбуждаются, что приводит к возникновению излучения. В зависимости от состава металлов различаются и спектры излучения ламп. Обычно компоненты подбираются так, чтобы компенсировать недостаток красного и желтого света в спектре ртути, что немаловажно при использовании возбуждаемых светом этого диапазона флуорохромов (например, флуоресцеина). Кроме этого, лампы данного типа компактны, экономичны в использовании, для них характерен пониженный уровень тепловой отдачи.

Источник возбуждения флуоресцентного излучения может быть выполнен в виде одного или нескольких светоизлучающих диодов, причем возможно использование диодов, имеющих как одинаковую длину волны излучения, так и различную. Применение светодиодов позволяет избежать нагревания системы, увеличивает срок ее эксплуатации.

Лазеры в качестве источника света используются в основном в сканирующих устройствах для обеспечения высокой интенсивности освещения в узкой спектральной области и на малой площади образца. В таких микроскопах остросфокусированные световые лучи лазера сканируют образец точку за точкой. Поскольку лазеры испускают свет в узкой спектральной области, пропадает необходимость применения возбуждающих светофильтров. Однако при использовании флуорохромов, которые возбуждаются на разных длинах волн, требуется применять разные лазеры или же прибегать к различного рода приемам.

Фильтры.

Фильтр возбуждающего света подбирается таким образом, чтобы он выделял из спектра лампы свет той длины волны, которая максимально эффективно поглощается флуорохромом. Например, выпускаются светофильтры под стандартные флуорохромы для «синей», «зеленой», «красной» люминесценции или под несколько стандартных флуорохромов (например, возбуждающий светофильтр BP 560/40 нм для «красной» люминесценции или возбуждающий светофильтр под несколько флуорохромов BP 370/40, BP 474/28, BP 585/35 нм производства фирмы Carl Zeiss).

Дихроичные зеркала (интерференционные светофильтры) имеют специальное интерференционное покрытие, позволяющее отражать свет, длина волны которого меньше определенного значения, и пропускать излучение с большей длиной волны. В данном случае возбуждающее излучение отражается, а сигнал флуоресценции полностью пропускается. Для получения таких фильтров на поверхность прозрачной пластины наносят несколько (от 10 до 200) слоев материала с чередующимися высоким и низким показателями преломления. Например, PbCl2, TiO2, ZnS (показатель 2,2 – 2,3) и MgF2, SiO2, Na3AlF6 (показатель 1,3 – 1,4). Толщина каждого слоя тщательно выдерживается (используется техника вакуумного напыления), поскольку этот параметр определяет положение максимума кривой пропускания. От числа слоев зависит ширина зоны пропускания фильтра и степень подавления «ненужной» части спектра.

Запирающие фильтры (band pass BP). При конструировании запирающих фильтров используют комбинацию длинноволновых отрезающих (shot pass filter, или SP filter) и длинноволновых пропускающих (long pass filter, или LP filter) фильтров. Первые задерживают длинноволновый свет, но пропускают коротковолновый, а LP-фильтры, напротив, пропускают длинноволновый свет, задерживая коротковолновый. Комбинируя эти фильтры, можно добиться того, что через фильтр будет проходить только свет определенного участка спектра. Запирающий фильтр выбирают в соответствии с фильтром возбуждающего света. Например, при установке возбуждающего светофильтра BP 560/40 нм используют запирающий светофильтр BP 630/75 нм.

Сближение в пространстве всех светофильтров позволило объединить их в единый светоделительный модуль. Такая конструкция обеспечивает производство легкой замены или смены модуля и дает возможность применять несколько флуорохромов одновременно, с высокой точностью совмещая полученные изображения. При приобретении флуоресцентного микроскопа необходимо серьезно подходить к вопросу о выборе светоделительных модулей, принимая во внимание поставленные задачи и спектральные характеристики имеющихся флуорохромов. Если планируется использовать несколько флуоресцентных красителей, необходимо учитывать, что спектры излучения флуорохромов не должны перекрываться. В противном случае возможны ошибки в интерпретации данных.

Конец ознакомительного фрагмента.