Тепловая изоляция пола играет важную роль в сохранении температурного режима внутри помещений и снижении расходов на отопление. Температура на поверхности пола является основным фактором, определяющим комфортность помещения. Теплые полы снижают количество простудных заболеваний, особенно у детей, которые любят возиться на полу. Поэтому температура поверхности пола должна быть ниже температуры воздуха в помещении на 2 °C.
В горизонтальных конструкциях пола теплопередача (проникновение холода) происходит более интенсивно, чем в вертикальных стенах. Поэтому теплоизоляция пола особенно важна, если пол уложен по грунту или по перекрытию, разделяющему помещения с разными температурными режимами (комната и холодный подвал). В помещениях с одинаковым режимом отопления излишняя изоляция приводит к удорожанию строительства.
Каждый строительный материал способен передавать тепло, но степень этой передачи различна. Поэтому для улучшения теплового режима помещений с отапливаемым режимом в полах устраивают теплоизолирующие прослойки или настилают покрытия с минимальным поглощением тепла (рис. 2). Основной особенностью теплоизоляционных материалов является их высокая пористость и, следовательно, малая средняя плотность и низкая теплопроводность. Способность пола поглощать тепло определяют с помощью так называемой искусственной ноги. Для этого контролируют убывание тепла в течение определенного отрезка времени. Различают теплый, средний и холодный пол.
Т е п л ы м и считают полы, покрытие которых выполнено из древесины (паркет, доски).
С р е д н и е полы – из пробкового линолеума, ксилолита, поливинилхлорида с изолирующей прокладкой.
Х о л о д н ы е полы – это большей частью полы, вымощенные плиткой или цементной стяжкой, наносимой непосредственно на бетонное основание.
Применение теплоизоляционных материалов позволяет уменьшить массу конструкций, снижая тем самым динамические и статические нагрузки на несущие конструкции здания.
Материалы, которые используют для тепловой изоляции пола, под действием приложенных нагрузок могут сжиматься, поэтому они должны обладать минимальной деформацией при сжатии и низкой теплопроводностью. К наиболее распространенным теплоизоляционным материалам, представленным на современном рынке, можно отнести: минеральную вату, стекловату, пенополиуретан, вспененный синтетический каучук и т. д.
Рис. 2. Теплоизоляция в случае наличия перекрытия, разделяющего помещения с разными температурными режимами: 1 – плита перекрытия; 2 – гидроизоляция; 3 – теплоизоляция; 4 – пароизоляция; 5 – настил пола; 6 – лага
Кроме того, современная промышленность выпускает специальные плиты на перлитобитумной и битумнополистирольной основе, плиты из пеностекла, заливочные системы и некоторые другие изделия с теплотехническими и влагостойкими характеристиками, удовлетворяющими предъявляемым к ним требованиям. Рассмотрим подробнее свойства основных материалов, которые используют для утепления полов.
Минеральная вата на каменной основе отличается высокой тепло– и звукоизоляционной способностью, огнестойкостью, хорошими водоотталкивающими свойствами, высокой сопротивляемостью механическим воздействиям. Для утепления полов минеральную вату поставляют в виде гибкого мата или твердой плиты. Гибкий мат изготавливают из гидрофобизированной минеральной ваты. Плотность гибкого мата составляет приблизительно 30 кг/м3, а водопоглощение – не более 1 % от объема. С одной стороны его покрывают (кашируют) перфорированной крафт-бумагой. Мат укладывают таким образом, чтобы он был обращен кашированной поверхностью в сторону теплого помещения.
Твердые минераловатные плиты обладают большей жесткостью. Минераловатные плиты (мягкие, полужесткие, жесткие и повышенной жесткости) на синтетическом связующем выпускают согласно ГОСТ 9573. Их чаще всего используют для утепления полов, уложенных по грунту. Сторону плиты, обладающую более высокой жесткостью, маркируют синей полосой. Плиты укладывают таким образом, чтобы маркированная сторона находилась сверху. Минераловатные плиты на синтетическом связующем (фенолоспирте, растворе или дисперсии карбамидного полимера и др.) впервые стали изготавливать по технологии, разработанной в УралНииСтройпроекте. Помимо минерального волокна и раствора полимера в гидромассу стали вводить пенообразователь. По мере совершенствования технологий стали выпускать минераловатные плиты, скорлупы и сегменты с синтетическим, битумным и неорганическим связующим (цементом, глиной, жидким стеклом и др.). Размеры и физико-механические показатели минераловатных материалов приведены в табл. 1.
Экструдированный пенополистирол является весьма перспективным теплоизоляционным материалом. Это новый для отечественной строительной индустрии материал, который характеризуется равномерной микроячеистой закрыто-пористой структурой и максимальной стабильностью теплотехнических и физико-механических свойств во времени по сравнению с другими видами утеплителей. Уникальные физико-механические и теплотехнические свойства экструдированного пенополистирола являются следствием технологического процесса, позволяющего получать из расплава полимера жесткую пену с равномерной микроячеистой структурой и нулевой капиллярностью.
Экструзионный способ производства в данном случае предопределяет важнейшие особенности структуры получаемого полистирольного пенопласта, который нельзя достичь никакими методами переработки полимерной композиции в пенопласт.
Таблица 1
Физико-механические показатели минераловатных материалов
К положительным качествам экструдированного пенополистирола в данном случае относятся:
– отсутствие капиллярности (закрытопористая структура);
– размер ячеек пенопласта (от 80 до 180 мкм);
– степень однородности ячеек (монодисперсность по Гауссу).
Сравнительные микроскопические исследования морфологической структуры материала показывают, что отечественный экструдированный пенополистирол ни в чем не уступает своему зарубежному аналогу (продукции фирмы The Dow Chemical). Материал обладает практически нулевым водопоглощением за исключением поверхностной сорбции. Нулевая капиллярность экструдированного пенополистирола подтверждается отечественными стандартами (ГОСТ 15-588-86 и ТУ 2244-01-179530000-97). Благодаря своей структуре экструдированный пенополистирол отличается высоким сроком службы и обеспечивает эффективное и экономичное решение проблемы теплоизоляции полов, подвергающихся различным нагрузкам в процессе эксплуатации. Он с успехом применяется для теплоизоляции полов первых этажей, подвальных помещений, а также промежуточных этажей.
Кокосовое волокно в качестве теплоизоляционного материала в нашей стране стало применяться сравнительно недавно. Традиционно этот материал использовался при производстве матрацев, диванов, обивке кузовов машин и т. п. Сейчас кокосовое волокно стало применяться как теплоизоляционный строительный материал и завоевало широкую популярность на рынке строительных материалов. Этот экологически чистый материал с прекрасными теплоизоляционными свойствами соответствует самым строгим стандартам высокоэффективных акустических и термических изоляторов. Поставляют изделия из кокосового волокна в виде плит, рулонов или полос.
Плиты из кокосового волокна являются идеальным решением для множества проблем акустической и тепловой изоляции. Их часто применяют для изоляции первых этажей зданий, для снижения ударных и акустических шумов, достигая при этом впечатляющих результатов.
Рулоны из кокосового волокна очень универсальны и дают возможность оптимизировать инсталляционные затраты. Техническая эффективность рулонов с течением времени не претерпевает практически никаких изменений. Они поддерживают свойства по акустической и термической изоляции на протяжении многих десятилетий.
Полосы из кокосового волокна в основном используются в нишах между деревянным полом и дранкой, где их применение дает превосходные результаты в снижении шумов, и являются прекрасным средством по устранению «акустических мостиков».
CorKoco – это комбинация двух натуральных материалов (кокосового волокна и черного пробкового агломерата), позволяющая достигнуть превосходных результатов благодаря дополняющим друг друга теплоизоляционным характеристикам. Стабильность в размерах позволяет CorKoco быть лучшим техническим решением там, где это необходимо. Эти материалы композиционные и существуют в нескольких вариантах поставки:
– CorKoco (1 + 1) – 1 лист кокосового волокна + 1 лист черного пробкового агломерата;
– CorKoco (2С + 1 А) – 2 листа кокосового волокна + 1 лист черного пробкового агломерата;
– CorKoco (2А + 1 С) – 1 лист кокосового волокна + 2 листа черного пробкового агломерата.
Кокосовое волокно является продуктом, абсолютно безвредным для окружающей среды и конечного потребителя, так как при его производстве не используются химические реактивы. Прочность, долговечность и эластичность делают кокосовое волокно универсальным материалом, который превосходно подходит для рынка акустических и термических изоляторов. Изоляционные материалы из кокосового волокна обладают следующими основными характеристиками:
– не электростатичны;
– устойчивы к влажности;
– не атакуются грызунами и термитами;
– не гниют, не поддерживают развитие грибка;
– после специальной пропитки являются негорючим материалом.
Вариантов применения кокосового волокна может быть много, в зависимости от тех проблем по тепло– и звукоизоляции, которые необходимо решать в каждом конкретном случае (рис. 3).
Рис. 3. Задействование плит из кокосового волокна для акустической и термической изоляции полов: 1 – пол; 2 – плиты из кокосового волокна; 3 – гидроизоляция; 4 – слой теплоизоляции; 5 – доски, укладываемые на перекрытия; 6 – лаги
Теплоизоляция полов первых этажей должна выполняться совместно с теплоизоляцией сопрягаемых с полом стен подвала, цоколя и других конструкций. Теплоизоляция подземных конструкций приобретает особое значение при наличии в районе строительства высокорасположенных водоносных слоев и грунтовых вод. В таких районах следует использовать теплоизоляционные материалы с закрытой ячеистой структурой, которая не позволяет капиллярный подъем воды. Для этой цели хорошо подходят плитные утеплители (экструдированный пенополистирол, плиты кокосового волокна и т. п.), которые обеспечивают не только теплоизоляционные характеристики, но и защищают гидроизоляционный слой от механических повреждений.
Технология установки плит утеплителя довольно проста. Они крепятся к ограждающим конструкциям подвала при помощи специального клея или механических фиксаторов. Выполняя наружную тепловую защиту фундамента, следует учитывать пучинистые явления грунта. Примерзнув к наружному слою тепловой изоляции, грунт, поднимаясь, разорвет изоляцию, снизив до минимума ее эффективность. Чтобы этого не случилось, теплоизоляционный слой нужно выполнять с максимально возможной гладкой поверхностью, а между ним и грунтом установить разделительную плоскость из поливинилхлоридной пленки или рубероида. Засыпку лучше производить крупным песком, шлаком или их смесью.
В зависимости от конструкции здания существует несколько схем утепления. Например, утепление перекрытия над вентилируемым подпольем или подвалом теплоизоляционными плитами ЛАЙТ БАТТС показано на рис. 4. Толщину теплоизоляционного слоя ЛАЙТ БАТТС можно подобрать, исходя из значений, приведенных в табл. 2.
Рис. 4. Утепление перекрытия над подвалом теплоизоляционными плитами ЛАЙТ БАТТС: 1 – пол; 2 – пароизоляция; 3 – балки, опирающиеся на цоколь или стены подвала; 4 – плиты ЛАЙТ БАТТС; 5 – подшивка из досок; 6 – вентиляционный продух; 7 – теплоизоляционные плиты КАВИТИ БАТТС; 8 – слой гидроизоляции
Таблица 2
Характеристика плит ЛАЙТ БАТТС
Несущие деревянные балки перекрытия, опирающиеся на цоколь здания, изолируют от несущих конструкций рубероидом или другим гидроизоляционным материалом. Для защиты подполья и подвала от сырости необходимо обеспечить их вентиляцию через специальные продухи размером 10 × 10 – 15 × 15 см, расположенные в цоколе через каждые 4-?5 м. Плиты утеплителя укладывают на доски или щиты, укрепленные по черепным брускам, на доски или стальную сетку, закрепленные к несущим балкам снизу (рис. 5). Утеплитель защищают от увлажнения с внутренней стороны дома (с теплой стороны) слоем пароизоляции из пергамина, рубероида, полиэтиленовой пленки и т. п. Для обеспечения паронепроницаемости делают нахлест полотнищ пароизоляции на 10–15 см. Края полотнищ пароизоляции заводят на стену на высоту 10 см и прикрепляют плинтусом к стене. По деревянным балкам укладывают половые доски и покрытие пола. Если стены здания имеют теплоизоляционный слой, то несущие элементы пола не должны прерывать или нарушать этот теплоизоляционный слой в местах их опирания на стену.
Если пол настилают по деревянным лагам, уложенным на кирпичные столбики, то плиты утеплителя размещают между деревянными лагами (рис. 6). Если подвал перекрыт железобетонными плитами, то утеплитель размещают непосредственно по плитам перекрытия между лагами пола (рис. 7).
Рис. 5. Теплоизоляция, уложенная на щиты, укрепленные по черепным брускам: 1 – черепной брусок; 2 – щиты; 3 – гидроизоляция; 4 – теплоизоляция; 5 – пароизоляция; 6 – пол; 7 – лага
Рис. 6. Утепление пола по деревянным лагам на кирпичных столбах укладкой теплоизоляции на щиты, укрепленные по черепным брускам: 1 – пол; 2 – пароизоляция; 3 – несущие балки; 4 – теплоизоляционные плиты ЛАЙТБАТТС; 5 – щиты; 6 – нижняя обшивка из досок; 7 – антисептированная прокладка из дерева; 8 – гидроизоляция; 9 – кирпичные столбики; 10 – бетонная подготовка; 11 – песок утрамбованный; 12 – черепные бруски
Утепление пола, уложенного по грунту, осуществляется плитами, которые размещают сверху бетонной стяжки (рис. 8). В этом случае необходимо обеспечить защиту плит утеплителя от капиллярной влаги. Для этого на подготовленный грунт укладывают 15-сантиметровый слой песка, по которому устраивают цементную стяжку. Сверху цементной стяжки настилают мощную гидроизоляцию из двух и более слоев рубероида, гидроизола иди другого современного изоляционнолго покрытия.
Теплоизоляция полов отапливаемых подвальных помещений выполняется по методикам, применяемым для полов первых этажей. При наличии давления, которое создается грунтовыми водами, теплоизоляционные плиты можно размещать как над, так и под железобетонными плитами, уложенными на щебне.
Рис. 7. Утепление пола, уложенного на бетонное перекрытие: 1 – пол; 2 – пароизоляция; 3 – лага; 4 – теплоизоляция; 5 – плита перекрытия; 6 – вентиляционный продух; 7 – теплоизоляция стены
Рис. 8. Утепление пола, уложенного по грунту: 1 – пол; 2 – балка; 3 – прокладка-антисептик; 4 – гидроизоляция; 5 – теплоизоляция; 6 – цементно-песчаная стяжка (не менее 50 мм); 7 – песчаная подсыпка; 8 – грунт
Теплоизоляция полов промежуточных этажей выполняется поверх плит перекрытия. Теплоизоляция бетонных плит, которые контактируют с наружным пространством либо находятся в неотапливаемых помещениях, может выполняться методом укладки теплоизоляционного материала снизу под плитами. Для предотвращения образования тепловых мостиков теплоизоляционные плиты должны иметь профилированные края.
О проекте
О подписке