Несмотря на то, что термин «цифровая экономика» сегодня прочно закрепился в нашей жизни и широко используется в научной литературе, в программах и разного рода документах, разрабатываемых как государством, так и бизнесом, общепринятого ее определения пока не существует. И сама цифровая экономика как объект управления, и тем более как объект стратегического управления, даже в своих основных чертах, не описана и в достаточной мере не определена, что требует дальнейшего методологического осмысления и разработки новых базовых положений. И это не случайно. Высокая скорость распространения научно-технологического прогресса в последние годы объективно привела к тому, что цифровые технологии все шире внедряются в различные сферы социально-экономической жизни во всем мире, внося коррективы в функционирование экономических систем.
В мировой практике самая распространенная формулировка «цифровой экономики» – это экономическая деятельность, субъекты которой широко используют цифровые (электронные) технологии. В этом простом определении цифровая экономика позиционируется с точки зрения базиса – использования цифровых информационно-коммуникационных технологий (ИКТ), включая их влияние на систему социальных, экономических и культурных отношений, характер труда и средства производства, процесс производства, распределения, обмена и потребления создаваемых с помощью этих технологий продуктов и услуг.
Мир вступает в этап, который характеризуется кульминацией развития информационных технологий, они становятся неотъемлемой частью новых интегрированных технологий, формирующихся в рамках VI технологического уклада, или четвертой промышленной революции. Речь идет о технологиях, возникающих на стыке цифровых, био-, когнитивных, физических технологий. Это анализ больших данных, нейротехнологии и искусственный интеллект, системы распределенного реестра, квантовые технологии, интернет вещей, промышленный интернет, робототехника, новые производственные технологии, технологии беспроводной связи и т.п.
Эти технологии кардинально изменяют порядок функционирования экономики, совершая революцию не только в сфере производства, но и в области управления, функционировании финансовой системы, формируя новые бизнес-модели, которые на базе цифровых платформ обеспечивают взаимодействие пользователей и поставщиков продукции и услуг на качественно ином уровне. Их применение в различных сферах деятельности дает возможность всему обществу получать значимые экономические выгоды – так называемые цифровые дивиденды. В силу масштабов и глубины их влияния на экономические процессы такие технологии еще называют «сквозными» или «подрывными».
Характеризуя их с точки зрения влияния на построение новых систем, обеспечивающих лучшее выполнение задач, видный немецкий экономист К. Шваб предложил выделить следующие основные их категории, которые являются движущими силами четвертой промышленной революции4 (см. табл. 1.1).
Таблица 1.1. Основные категории технологий четвертой промышленной революции
Составлено по: Шваб К. Технологии четвертой промышленной революции. М.: Эксмо, 2019. С. 90–91.
Таким образом, раскрывая далее содержание цифровой экономики, необходимо указать на следующие ее составляющие. Во-первых, это сектор ИКТ, включая производство и торговлю ИТ-оборудованием, разработку программного обеспечения (ПО) и цифровых товаров, сервисы и услуги, информационно-телекоммуникационную инфраструктуру. Во-вторых – интеграционные цифровые технологии, возникающие на стыке информационных и био-, когнитивных и физических технологий. В-третьих – это непосредственно процесс проникновения сквозных цифровых технологий во все сферы жизни, которые, прежде всего, формируют новые бизнес-модели на основе цифровых платформ, качественно изменяющих функционирование экономических систем.
Процесс цифровизации экономики на основе использования сквозных технологий несет в себе множество экономических и социальных выгод (см. рис. 1.1). По оценкам экспертов Всемирного экономического форума, цифровые технологии способны повысить производительность труда в компаниях на 40%5. Именно их эффективное использование в ближайшем будущем будет определять конкурентоспособность как отдельных компаний, так и стран в целом6.
Рис. 1.1. Экономические и социальные выгоды цифровой экономики
Источник: Цифровая Россия: новая реальность / Отчет McKinsey Global Institute. 2017 (июль). С. 22. www.mckinsey.com/ru/our-insights.
Благодаря открывающимся возможностям цифровых технологий – собирать, использовать и анализировать огромные объемы машиночитаемой информации (цифровых данных) – процесс цифровизации экономики продолжает развиваться ускоренными темпами. Об этом свидетельствуют постоянно растущие масштабы потока данных, который увеличился с примерно 100 ГБ в день в 1992 г. до более 46600 ГБ в секунду в 2017 г. Согласно прогнозам, уже в 2022 г. объем глобального интернет – трафика достигнет 150700 ГБ в секунду7. Ежедневно в мире отправляется 500 млн твитов (коротких сообщений длиною в 140 символов), 294 млрд электронных писем, 65 млрд сообщений в WhatsApp. Каждую минуту люди совершают 3,8 млн поисковых запросов в Google и просматривают 4,5 млн видео на YouTobe8.
Аналитика больших данных становится источником стратегий конкурентоспособности, роста производительности, инноваций и потребительского рынка. Вместе с тем взрывное увеличение количества данных требует новых способов управления ими. При этом возникает совершенно новая «цепочка создания стоимости данных», звеньями которой выступают компании, занимающиеся их сбором, хранением, анализом и моделированием. В этом случае стоимость создается в результате превращения данных в «цифровой интеллект» и монетизации в процессе их коммерческого использования9.
Ожидается, что в последующие десять лет более 80 млрд подключенных устройств по всему миру будут постоянно обмениваться данными с людьми и друг с другом. Образуя огромную сеть взаимодействия, такая система коренным образом способна изменять способы производства товаров и услуг.
Интернет вещей, который как раз и направлен на формирование такой сети, становится одной из базовых сквозных цифровых технологий. Это технология нового уровня, которая помогает оптимизировать рабочие процессы, отслеживать и анализировать состояние оборудования, осуществлять прогнозируемое обслуживание, интерпретировать огромные объемы данных и принимать решения в реальном времени, что раньше не представлялось возможным10.
По оценкам IDC (International Data Corporation), к 2025 г. среднестатистический подключенный человек в мире будет взаимодействовать с устройствами Интернета вещей почти 4900 раз в день, что эквивалентно одному взаимодействию каждые 18 секунд. Это представляет экспоненциальный рост – с 298 раз в день в 2010 г. до 584 в 2015 г. Такой быстрый рост использования Интернета вещей приведет к дальнейшему расширению объема цифровых данных11.
Благодаря развитию технологий Интернета вещей мир превращается в один компьютер, который является распределенным, гибким, саморегулирующимся, масштабируемым, растущим. Появляются целиком автоматизированные «умные дома», «интеллектуальные города», «умная энергетика», заводы будущего, работающие на основе использования цифровых технологий. Быстрыми темпами Интернет вещей завоевывает такие регулируемые рынки, как здравоохранение и образование, культура.
Развитие Интернета вещей позволяет решить задачу создания цифрового двойника, т.е. цифрового отображения физических лиц, объектов, мест или процессов, которые в дальнейшем могут быть использованы для моделирования поведения людей, продуктов, процессов производства и обслуживания, повышая при этом скорость и эффективность работы, сокращая во времени процесс создания, производства и выхода на рынок. Так, одной из пионерных компаний, которая интегрировала цифровых двойников в производственные процессы, была «Simens», что позволило ей обеспечить виртуальное тестирование продуктов еще до начала их изготовления. Активно используются цифровые двойники и в процессе производства продукции компанией General Electric.
Технология цифровых двойников сегодня используется не только в промышленном производстве, но и в государственном секторе. Например, интересен опыт реализации программы «Виртуальный Сингапур», на реализацию которой было выделено 73 млн долл.12 В рамках программы предполагалось создать трехмерный цифровой двойник города для проведения виртуальных экспериментов, моделирования, симулирования рассеивания толпы в экстренных случаях, а также для решения других задач выстраивания его оптимального функционирования.
Крупнейшим сегментом Интернета вещей является промышленный интернет, который позволяет автоматизировать процесс от производства комплектующих до электронного заказа и доставки продукции конечному потребителю. Автоматизация производственных процессов в рамках данной технологии происходит за счет скрепления с помощью киберфизических систем различных блоков автоматизации (включая АСУТП и производственную робототехнику) в единую систему управления, от проектирования и дизайна продукции до автоматизированного производства и контроля качества по всей цепочке – от комплектующих до конечного продукта.
Другой блок задач, который решает промышленный интернет, – это встраивание производственной цепочки в автоматизированную систему заказа продукции, мониторинга ее качества и автоматизированной системы обслуживания продукции и поддержки клиентов. При высокой степени автоматизации «Промышленный Интернет» позволяет перейти к выпуску самонастраиваемого оборудования на заказ, гибко изменяя систему производства, номенклатуру и характеристики продукции под требования заказчика13. Другими словами, находясь еще в цехах, незаконченный продукт на сборочной линии будет сам «говорить» машине, что необходимо сделать.
О проекте
О подписке