Читать книгу «Энергия. Трансформации силы, метаморфозы понятия» онлайн полностью📖 — Коллектива авторов — MyBook.

РАЗДЕЛ 1
Горизонт истории понятия

Макс Яммер 35
Понятие силы. Исследование оснований динамики. Формирование научных понятий 36

Цель настоящего исследования – представить историческое развитие понятия силы в физической науке. Хотя это понятие признано одним из основных и первичных в физической теории, прежде оно никогда не становилось предметом всестороннего исторического анализа и критического рассмотрения. Как правило, его считают не нуждающимся в объяснении, так как на практике оно применяется вполне успешно. В учебниках и даже в объемных монографиях нет почти никакой информации о природе этого понятия. Огромное разнообразие его практических применений полностью игнорирует проблемный характер понятия силы.

Часто говорят, что ученому-естественнику нет дела до истории идей, которые он применяет в своей работе. Но учитывая, насколько важной для современной физики стала проблема возникновения научных понятий, этот аргумент почти утратил свое значение. Некогда проблемой формирования научных понятий интересовались лишь антиквары от истории науки и педанты от эпистемологии. Для современной науки она стала жизненно важной.

Изучать исторические аспекты того, как формировались понятия в физической науке, нелегко. Для того чтобы хорошо ориентироваться в источниках, требуется глубокое историческое и филологическое образование, а чтобы их критически сравнивать, интерпретировать и оценивать их значимость для науки, необходимо владеть теорией физики.

При изучении того, как развивалось то или иное научное понятие, возникает серьезная проблема. Она состоит в том, что определение этого понятия неизбежно будет туманным. В науке понятие может быть строго закреплено только с помощью точного определения. Но если взглянуть на определение исторически, перед нами лишь один из поздних этапов развития данного понятия. Свести понятие исключительно к его современному определению значило бы игнорировать значительную часть его истории. Даже после того как оно заняло точно определенную позицию, история понятия еще не закончена – наиболее полное его значение проявляется только в контексте концептуальной структуры, в которую оно встроено, а этот контекст постоянно расширяется и изменяется. Однако с позиции истории идей не видна самая важная и интересная часть биографии понятия, а именно тот период, когда оно наиболее активно развивается и способствует формированию научной мысли. Таким образом, изучающим историю научного понятия приходится как-то реагировать на то, что определение обсуждаемого предмета туманно. Здесь в равной степени опасно устанавливать слишком широкие или слишком узкие рамки.

Современная физика не оставляет надежды тому, во что верили большинство авторитетных ученых в прошлом столетии. От амбиций, что физика сможет создать абсолютно точный слепок реальности, приходится отказаться. У науки в ее сегодняшнем понимании менее амбициозная и более конкретная цель. Описать определенные феномены опытно постигаемого мира и установить общие принципы того, как их можно предсказать и «объяснить», – вот две ее основные задачи. Под «объяснением» здесь, скорее, имеется в виду соотнесение этих феноменов с общими принципами. Чтобы успешно решить эти задачи, наука использует понятийный аппарат, то есть систему терминов и теорий, которые репрезентируют или символизируют данные, полученные через чувственный опыт, – прикосновения, цвета, тона, запахи и то, как они могут быть связаны между собой. Этот аппарат состоит из двух частей: 1) сеть понятий, дефиниций, аксиом и теорем, составляющих гипотетико-дедуктивную систему (в математике ее примером является евклидова геометрия), и 2) отношения, в которых элементы этой системы состоят с определенными феноменами чувственного опыта. Через эти отношения, которые можно назвать «правилами интерпретации» или «эпистемологическими соотношениями»37, устанавливается ассоциативная связь между, например, черным пятном на фотографической пластинке (чувственное ощущение) и спектральной линией определенной волновой длины (концептуальный элемент или конструкт в рамках гипотетико-дедуктивной системы38). Другой пример – ассоциативная связь между щелчком усилителя на счетчике Гейгера и проходом одного электрона через счетчик. Физика нуждается в обеих сторонах этой связи именно потому, что она представляет собой теоретическую систему предположений об эмпирических феноменах. Гипотетико-дедуктивная система в отсутствие правил интерпретации быстро выродится в спекулятивный анализ, который нельзя ни проверить, ни верифицировать. Сеть эпистемологических соотношений без теоретической надстройки, выведенной путем дедукции, останется бесплодным перечнем фактов, который не будет иметь ни предсказательной, ни объяснительной силы.

Принятие правил интерпретации создает некоторую произвольность внутри системы как целого, допуская в ее рамках некоторую предрасположенность в отборе понятий. Другими словами, произвольные модификации в терминологических соответствиях определенным ощущениям можно компенсировать, соответствующим образом изменяя эпистемологические соотношения, но не отрывая их от материальной реальности. Именно из‐за этой произвольности научные понятия воспринимают как «свободные творения человеческого разума», которые «не однозначно определены внешним миром, как это иногда может показаться»39.

Когда наука пытается создать логически последовательную систему мысли, которая бы соответствовала хаотическому разнообразию чувственного опыта, выбор основных понятий определяется – хотя и неоднозначно – их способностью создать базис, на основании которого можно объяснить наблюдаемые факты. Во-первых, сама неожиданная последовательность экспериментов и наблюдений вносит в систему элемент случайности. Как недавно заметил Джеймс Брайант Конант, «кажется ясным, что развитие современных научных идей могло пойти по несколько другому пути, если бы хронологическая последовательность некоторых экспериментальных открытий оказалась иной. В определенной степени эту хронологию можно считать чисто случайной»40. Во-вторых, специфический характер фундаментальных концепций или базисных понятий в некоторой степени определяется общими представлениями, которые, в свою очередь, мотивированы подсознательными мотивами. Важная задача для историка науки – изучить состояние мысли, преобладающее в определенный период, и выделить в нем вненаучные элементы, ответственные за итоговый отбор понятий, которым суждено играть роль фундаментальных в конструируемом понятийном аппарате. Изучая историю науки ретроспективно, часто можно видеть, как на определенном этапе развития физики в целом удовлетворительно использовались (или могли использоваться) альтернативные друг другу понятия.

В качестве иллюстрации приведем важный для нашей темы пример: джайнистскую физику в древнеиндийской философии41. Джайнисты – последователи Джины Махавиры (известен также под именем Вардхамана), старшего современника Будды, – создали реалистичную и релятивистскую концепцию атомистического плюрализма (anekāntarāda). В отличие от западной науки, для которой, как мы увидим позже, понятие силы является фундаментальным, в данной системе не существует этого понятия. В джайнистской физике категория ajīva включает материю (pudgala), пространство (akāshā), движение (dharma), покой (adharma) и время (kāla). Dharma и adharma означают условия движения и покоя. Бесформенные и пассивные, они не порождают движение и не прекращают его – они лишь помогают и способствуют движению или покою, подобно тому как для движения рыб нужна вода, а для покоя предметов – земля, на которой они лежат. «Действие» (kriya) и «изменение» (parināma) возникают благодаря «времени», при этом оно само по себе не вызывает движение, как это делает понятие силы в западной мысли. Есть и более привычный (хотя и не столь показательный) пример концептуальной схемы, где понятие силы не задействовано. Это, разумеется, декартова физика. Эта система, по крайней мере в том виде, как задумывал ее создатель, основывалась исключительно на геометрических и кинематических представлениях, а также на идее непроницаемости.

Ученый постоянно вынужден пересматривать свою концептуальную схему в силу множества факторов. Если не брать во внимание общекультурные мотивы, которые отсылают нас к конкретным философским, теологическим или политическим идеям, существуют три наиболее важных методологических фактора, требующих пересмотра схем. Во-первых, это результаты новых экспериментов и наблюдений, из которых выводятся новые, ранее неизвестные следствия. Во-вторых, это возможные противоречия в логической сети выводимых понятий и их взаимосвязей. Третьим фактором является поиск наибольшей простоты и элегантности для выражения системы понятий. В большинстве случаев необходимо сочетание двух факторов (а иногда и учет всех трех), чтобы произошла перестройка или фундаментальная смена понятийной структуры. Хорошо известный пример – эксперимент Майкельсона – Морли, который доказал, что скорость света не зависит от движения Земли. Этот феномен был ранее неизвестен и, более того, несовместим с господствовавшей в конце XIX века теорией эфира. Его можно было встроить в эту концептуальную схему с помощью некоторых допущений («лоренцево сокращение длины»), но это серьезно усложнило бы схему и тем самым нарушило принцип простоты. Искусно переосмыслив понятия времени и пространства в рамках частной теории относительности, Эйнштейн, по существу, пересмотрел понятийный аппарат классической механики.

Конечно, не всегда этот аппарат приходится модифицировать столь радикальным способом, как это сделал Эйнштейн. Для историка научных понятий очень важным элементом системы является процесс «переопределения» понятия, который изменяет его статус и положение в логической структуре данной системы. Классический пример такого переопределения можно найти в истории понятия температура. Изначально она считалась качественным выражением ощущения теплоты, а затем стала количественным показателем состояния материи, которое измеряется ртутным термометром по определенной шкале. Когда в ходе дальнейшего развития этого понятия стало очевидно, что «температура» в таком понимании зависит от свойств термометрического вещества, понятие еще раз переосмыслили, введя так называемую «абсолютную» термодинамическую шкалу. Так температура оказалась частью более обширной и понятной сети отношений, став неотъемлемой частью кинетической теории материи. Очевидно, что в результате этого процесса исторически и психологически более позднее понятие (в случае «температуры» – это кинетическая энергия молекулы газа) рассматривается в качестве логически более раннего, более систематичного и более фундаментального.

Понятия, которые ранее считались базовыми, могут в результате переопределения превратиться в производные. Хотя в истории научных понятий это случается не так часто, возможно и обратное: понятие, изначально возникшее как производное, на более позднем этапе, после переопределения другого понятия может быть выбрано в качестве базового. В классической механике скорость обычно считается производным понятием – отношением расстояния s ко времени t или пределом отношения (как в формуле Δs/Δt). Здесь расстояние и время рассматриваются как базовые понятия. Тем не менее вполне возможно было бы создать непротиворечивую теорию движения, в основе которой лежали бы базовые понятия времени t и скорости v. Скорость бы при этом измеряли напрямую неким аналогом спидометра, а расстояние считали бы производным понятием и вычисляли как произведение скорости и времени s = t · v, или по более общей формуле s = ∫v ∙ Δt. Современная астрономия, по крайней мере отчасти, последовательно поступает именно так. Связь этих понятий с измерениями материального мира, разумеется, не создает никакого препятствия: как ясно показала теория электромагнетизма, такая связь абсолютно произвольна и может полностью соответствовать понятиям, отобранным в качестве базовых.

Что касается понятия силы, оно возникло по аналогии с мускульным усилием человека, его духовным влиянием или силой воли. В дальнейшем его распространили на неодушевленные объекты как проявление силы, заключенной во всех материальных предметах. Пропуская несколько промежуточных стадий, можно сказать, что понятие силы стало ключевым для определения «массы», а оно, в свою очередь, определило понятие «импульс». В дальнейшем классическая механика переопределила силу как производную по времени от импульса, тем самым (по крайней мере, на первый взгляд) уничтожив все следы ее прежних анимистических определений. Наконец, «сила» стала полностью относительным понятием, почти готовым к тому, чтобы полностью исчезнуть из понятийной структуры.