Читать книгу «Нейронные сети. Эволюция» онлайн полностью📖 — Каниа Алексеевича Кана — MyBook.
image

ГЛАВА 1

Основа для создания искусственного нейрона

Где используются нейронные сети

Современные вычислительные машины выполняют математические операции с огромной скоростью. Решения различных арифметических и логических операций с числами – суть работы любого компьютера.

Сложение чисел с очень большой скоростью – это огромное преимущество компьютера над мозгом человека. Сложение больших чисел у человека вызывает затруднение, не говоря о скорости их вычисления.

Но есть задачи, с которыми наш мозг справляется куда эффективнее любого компьютера. Если мы взглянем на изображение ниже, то легко можем распознать что на нем изображено:




Вы без труда узнаете, что изображено на картинке, так как наш мозг идеальное средство для анализа изображения и его классификации. А вот компьютеру, напротив, очень трудно решать подобные задачи.

Но мы можем использовать вычислительные ресурсы современных компьютеров для моделирования работы мозга человека – искусственной нейронной сети.

Как устроены биологические нейронные сети

Что такое биологический нейрон и нейронные сети? У нас с вами и многих животных есть мозг. Мозг в свою очередь представляет собой сложную биологическую нейронную сеть, которая принимает информацию от органов чувств и обрабатывает её (распознавание слуховой и зрительной информации, распознавание вкуса, тактильных ощущений и т.д.).

Строение биологического нейрона:



Собственно, эту биологическую модель нейрона мы и будем моделировать. А точнее нам понадобится смоделировать некую структуру, которая принимает на вход сигнал (дендрит), преобразовать этот сигнал по типу – как это происходит в биологическом нейроне, и передать преобразованный сигнал на выход (аксон).

Искусственный нейрон – математическая модель биологического нейрона.

Модель искусственного нейрона (слева – биологический нейрон, справа – искусственный):



Наш мозг, как и любая биологическая нейронная сеть, состоит из множества нейронов.

В человеческом головном мозге насчитывается более 80 миллиардов нейронов, у каждого из который тысячи входов и выходов, и каждый из них соединен с входами других нейронов. И такую модель, в ограниченных объёмах, мы тоже с успехом можем упростить.

Переход к модели искусственных нейронных сетей:





Уровень вычислительной мощности для моделирования ИНС

Мы уже знаем, что в мозге человека более 80 миллиардов нейронов, у каждого из который тысячи входов и каждый из них соединен с выходами других нейронов.

Смоделировать такой объём нейронов и количество их связей, мы на сегодняшний день не сможем. Но, мы можем упростить модель работы мозга, правда в гораздо меньших объёмах. Уровень вычислительной мощности современных компьютеров, при моделировании биологических нейронных сетей, как можно видеть на слайде ниже, немногим выше обычной пиявки.

Насколько сильно мы уменьшаем количество нейронов и связей по сравнению с человеческим мозгом:



Как видите, до человека еще достаточно далеко. Но и этого объёма, что будет доступен, будет вполне достаточно для наших задач.

Почему работают нейронные сети

Весь секрет работы нейронных сетей заключается в работе синапсов, которые вы можете видеть на изображении биологического нейрона:



Синапсы – место стыка выхода одного нейрона и входа другого, где происходит усиление и ослабление сигнала. В усилении и ослаблении сигнала и происходит вся суть работы и обучения нейронных сетей. Если при обучении правильно подобрать параметры в синапсах, то входной сигнал, после прохода через нейронную сеть, будет преобразовываться в верный сигнал на выходе.

Все выше сказанное сейчас для вас представляется, лишь теоретической абстракцией и без практики очень трудным к осмыслению, но мы все разберем по полочкам – всю суть работы этого механизма. Действительно, на данном этапе невозможно понять, как работает нейрон, в чем смысл ослабления и усиления сигналов в синапсах, но информация, которую мы получили поможет нам в будущем, когда будем разбираться, что же всё-таки происходит внутри нейрона и нейронных сетях.

Как автоматизировать работу

Наверняка, многим из нас, порой до чёртиков, надоедало повторять одни и те же действия на работе или учёбе. В этот момент кажется, что ничего не может быть хуже каждодневной рутины.

Давайте включим воображение и представим себя офисным работником. Суть нашей работы – классификация данных на два вида. Каждый день, нам приходит список с данными, где может содержаться более 1000 позиций, которые мы самостоятельно должны отделить друг от друга, на основании чего сказать – какой из двух видов стоит за определенной позицией.

Итак, мы пришли на работу и видим на столе очередной список с данными, которые мы должны как можно быстрей классифицировать. А браться за работу, ох как неохота. Эх, если бы работа умела сама себя делать…

А ведь это мысль! Что если создать такую программу, которая многое из наших вакантных обязанностей, брала на себя. Сама с большой точностью, классифицировала загружаемые в неё данные.

Всё это кажется фантастикой, но всё же реализуемо.

Логичней всего в первую очередь подумать, как это сделать с точки зрения математики. Ведь используя строгую математическую логику, мы поймём, как нам действовать, и добьёмся точных данных на выходе программы.

Ну как в любом начинании, нужно начать с самого простого.

Когда то, в младших классах, на уроке математики мы проходили линейную функцию:


y = Ax + b


Что если сделать так, что на числовых координатах, все данные которые будут находится выше линейной функции, будут принадлежать к одному классу, а ниже к другому. То есть функция прямой будет служить нам как классификатор.

Давайте покажем вышесказанное на слайде:





Отлично! Теперь осталось вспомнить что представляет из себя линейная функция.

Линейная классификация

Вспоминая школьный курс математики, из которого нам должно быть известно, что коэффициент А, в уравнении прямой, отвечает за её наклон. Чем больше значение коэффициента А, тем больше крутизна наклона линии. А коэффициент b – отвечает за точку начала координат по оси Y, через которую проходит прямая.

Раз мы еще толком не знаем, как будем действовать, давайте максимально всё упрощать. Будем считать, что прямая проходит через начало координат и соответственно параметр прямой b, обратим в ноль: b = 0. Тогда окончательное выражение нашей разделительной линии, станет еще более простым:

y = Ax

Пусть нашим заданием будет – классифицировать два вида животных, определенной возрастной группы, в два дня от роду, по размеру их тела – высоте и длине.

Для начала, подберем всего две выборки, которые разительно отличаются друг от друга:


Примем за х – значение длины, а за y – значения высоты. Визуализируем эти данные на числовой прямой:



Нужно придумать как разделить эти два вида линейной функцией. Попробуем мыслить последовательно.

Для начала, попробуем разделить наши данные случайной разделительной линией. Для этого примем значение коэффициента крутизны любым случайным числом, пусть А = 0,4. Тогда наше уравнение разделительной линии примет вид – y = 0,4x.



Как следует из графика, линия – y = 0,4x, не отделяет один вид от другого. Для выполнения условия, её необходимо поднять выше. Для этого нам потребуется выработать последовательность команд и математические правила. Говоря иными словами, проработать алгоритм, когда при подаче данных из нашей таблицы (длины и ширины видов животных), в конечном итоге разделительная линия будет четко разделять эти два вида.


Теперь давайте протестируем нашу функцию на первом тренировочном примере, соответствующему виду крокодила, где: высота крокодила – 20, длина – 40. Не важно в чем будем измерять, в какой метрической системе. Самое близкое по условию это сантиметры. Но будем считать, что измеряем в условных единицах. Возьмём пример, где х=40 (длинна=40), и подставив в него значение нашего коэффициента А = 0,4, получим следующий результат:


y = Ax = (0,4) * (40) =16

На выходе получили значение высоты y = 16, а верный ответ y =20.

Для того чтоб исправить положение и приподнять нашу линию, введем понятие ошибки Е, с помощью следующей формулы:


Е = целевое значение из таблицы – фактический результат


Следуя этой формуле:


Е = 20 – 16 = 4


Теперь давайте приподнимем нашу линию на 4 пункта выше и отобразим это на графике:






Ну и тут, как мы можем наблюдать, наша линия проходит через точку определяющую вид – крокодил, а нам надо чтобы линия лежала выше.

Решается эта проблема очень легко, давайте примем наши целевые значение чуть больше, положим высоту у = 21, вместо у = 20. И снова пересчитаем ошибку с новыми параметрами:


Е = 21 – 16 = 5


Отобразим новый результат на координатах:



В итоге имеем новую прямую с новым значением коэффициента крутизны. Найдя этот коэффициент, мы как раз и сможем построить нужную нам прямую, на всех значениях оси x (длины).

Для этого нам необходимо через наше значение ошибки Е, найти искомое изменения коэффициента А. Чтоб это сделать, нам нужно знать, как эти две величины связаны между собой, тогда мы бы знали, как изменение одной величины влияет на другую.

Начнем с линейной функции:

y = Ax

Обозначим переменной T – целевое значение (наше значение из таблицы). Если ввести в искомый коэффициент А, такую поправку как: А+∆А = искомое А.

Тогда целевое значение можно определить, как:

T = (А + А) х

Отобразим последнее соотношение на графике:



Подставим эти значения в формулу ошибки Е = T – у:


Е = T – у = (А + ∆А) х – Ах = Ax + (∆А) х – Ах = (∆А)х

Е = (∆А)х


Теперь зная, как ошибка Е связана с ∆А, нетрудно выяснить что:


∆А = Е / х

Отлично! Теперь мы можем использовать ошибку Е для изменения наклона классифицирующей линии на величину ∆А в нужную сторону.

Давайте сделаем это! При x = 40 и коэффициенте А = 0,4, ошибка E = 5, попробуем найти величину ∆А:

∆А = Е/х = 5 / 40 = 0,125

Обновим наше начальное значение А:

А = А+∆А = 0,4 +0,125 = 0,525

Получается новое, улучшенное, значение коэффициента А = 0,525. Можно проверить это утверждение, найдя расчетное значение у с новыми параметрами:


y = А х = 0,525 * 40 = 21


В точку!

Теперь давайте узнаем на сколько надо изменить коэффициент А, чтоб найти верный ответ, для второй выборки из таблицы видов – жираф.

Целевые значения жирафа – высота y = 40, длина x = 20. Для того чтобы, разделительная линия не проходила через точку с параметрами жирафа, нам необходимо уменьшить целевое значение на единицу – y = 39.

Подставляем x = 20 в линейную функцию, в которой теперь используется обновленное значение А=0,525:

у = Ax = 0,525 * 20 = 10,5

Значение – у = 10,5, далеко от значения y = 39.

Ну и давайте снова предпримем все те действия, что делали для нахождения параметров разделяющей линии в первом примере, только уже для второго значения из нашей таблицы.

Е = Ty = 39 – 10,5 = 28,5


Теперь параметр ∆А примет следующее значение:


∆А = Е/х = 28,5 / 20 = 1,425


Обновим коэффициент крутизны А:


А = А+∆А = 0,525 +1,425 = 1,95

Получим обновленный ответ:

y = А х = 1,95 * 20 = 39


То есть, при x = 20, A = 1,95 и ∆А = 1,425 – функция возвращает в качестве ответа значение 39, которое и является желаемым целевым значением.

Представим все наши действия на графике:




Теперь мы наблюдаем, что линия разделила два вида, исходя из табличных значений. Но полученная нами разделяющая линия лежит гораздо выше её воображаемого центра, к которому мы стремимся:



Но и это легко поправимо. Мы добьемся желаемого результата сглаживая обновления, через специальный коэффициент сглаживания – L, который часто называют как – скорость обучения.

Суть идеи: что каждый раз обновляя А, мы будем использовать лишь некоторую долю этого обновления. За счет чего, с каждым тренировочным примером, мы мелкими шагами будем двигаться в нужную нам сторону, и в конечном результате остановимся около воображаемой прямой по центру.

Давайте сделаем такой перерасчет:

∆А = L * (Е / X)

Выберем L=0,5 в качестве начального приближения. То есть, мы будем использовать поправку вдвое меньшей величины, чем без сглаживания.

Повторим все расчеты, используя начальное значение А=0,4. Первый тренировочный пример дает нам у = Ax = О,4 * 40 = 16. При x = 40 и коэффициенте А = 0,4, ошибка E = T – y = 21 – 16 = 5. Чтобы график прямой, не проходил через точку с нашими координатами, а проходил выше её, то принимаем целевое значение – T = 21.

Рассчитаем поправку: ∆А = L




...
7