Читать книгу «Как не ошибаться. Сила математического мышления» онлайн полностью📖 — Jordan Ellenberg — MyBook.
image

Суть математического анализа, изложенного на одной странице

Теперь я хочу объяснить вам суть математического анализа. Готовы? Вот идея, за которую мы должны благодарить Исаака Ньютона: в идеальном круге нет ничего особенного. Каждая гладкая кривая при достаточном увеличении масштаба напоминает прямую линию[62]. Не имеет значения, насколько изогнута или закручена эта кривая, – главное, что у нее нет острых углов.

Когда вы запускаете ракету, траектория ее перемещения выглядит так.


Ракета сначала движется вверх, а затем вниз, образуя параболическую дугу. Сила тяжести изгибает любую траекторию движения по направлению к поверхности Земли; это один из самых фундаментальных законов нашей физической жизни. Но, если мы увеличим масштаб и рассмотрим очень короткий отрезок этой кривой, она будет выглядеть так.



Затем так.



Как и в случае окружности, траектория движения ракеты кажется прямой линией, направленной вверх под определенным углом. Безусловно, эта линия отклоняется под действием силы тяжести, но подобное отклонение слишком незначительно, чтобы увидеть его невооруженным глазом. Приближение к еще более мелкому участку кривой делает линию еще больше похожей на прямую. Чем больше приближение, тем ровнее участок кривой.

А теперь сделаем концептуальный скачок. Ньютон сказал: послушайте, давайте пойдем до конца. Уменьшайте поле зрения до тех пор, пока оно не станет бесконечно малой величиной – настолько малой, что она будет меньше любого размера, который вы можете назвать, но все же не равной нулю. Вы изучаете траекторию движения ракеты не на протяжении очень короткого периода, а в один момент времени. В таком случае то, что было почти прямой линией, становится в точности прямой. Наклон этой кривой Ньютон называл флюксией, а мы называем производной.

Именно этот скачок не был готов совершить Архимед. Он понимал, что многоугольники с более короткими сторонами все более и более приближаются к окружности, но он никогда не говорил о том, что в действительности окружность представляет собой многоугольник с бесконечно большим количеством бесконечно малых сторон.

Некоторые современники Ньютона также не разделяли его точку зрения. Наиболее активно возражал Ньютону Джордж Беркли, который критиковал концепцию бесконечно малых величин Ньютона в крайне издевательском тоне[63], как, к сожалению, сейчас уже не пишут в математической литературе:

А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками (ghosts) исчезнувших величин?[64]

Тем не менее исчисление бесконечно малых все-таки работает. Если вы раскрутите привязанный к веревке камень над головой, а затем резко отпустите его, он улетит по прямолинейной траектории с постоянной скоростью[65] в направлении, в котором, согласно расчетам, он движется в тот момент, когда вы его отпускаете. Это еще одна идея Ньютона: движущиеся объекты склонны перемещаться по прямолинейной траектории, если какая-то другая сила не заставляет объект отклоняться в ту или иную сторону. Это и есть одна из причин, почему линейное мышление настолько естественно для нас: интуитивное восприятие времени и движения формируется у нас под воздействием явлений, которые мы наблюдаем в окружающем мире. Еще до того, как Ньютон сформулировал свои законы, мы, люди, в глубине души знали, что все вокруг нас стремится двигаться по прямой, если только нет причин двигаться иначе.

Бесконечно малые приращения и ненужные затруднения

Критики Ньютона в чем-то были правы: его толкование производной далеко от того, что в наши дни принято называть строгой математикой. Проблема заключается в концепции бесконечно малой величины, которая на протяжении тысяч лет была для математиков камнем преткновения. Трудности начались с древнегреческого философа V столетия до нашей эры Зенона, представителя Элейской школы, который часто задавал по поводу физического мира на первый взгляд невинные вопросы, неизменно перераставшие в серьезные философские дискуссии.

Представляю вам самый знаменитый парадокс Зенона в вольном переложении. Я решаю сходить в магазин за мороженым. Конечно, я не смогу преодолеть весь путь до магазина, пока не пройду половину этого пути. А как только я пройду половину пути, я все равно не смогу добраться до магазина, пока не преодолею половину оставшегося пути. Когда я сделаю это, мне все равно предстоит преодолеть половину оставшегося расстояния – и так далее. Я могу подходить к магазину все ближе и ближе, но, сколько бы этапов этого процесса я ни прошел, на самом деле мне так и не удастся добраться до магазина. У меня всегда будет оставаться пусть крохотное, но все же ненулевое расстояние до моих двух шариков мороженого. Эта аргументация применима к любому другому пункту назначения: в равной мере невозможно перейти улицу, или сделать один-единственный шаг, или взмахнуть рукой. Любое движение исключено.

Говорят, что киник Диоген опроверг доводы Зенона довольно простым методом: он встал и прошел из одного конца комнаты в другой. Это весьма хороший довод в пользу того, что движение все же возможно, а значит, что-то не так с доводами Зенона[66]. Но где же была ошибка?

Разбейте путь в магазин на фрагменты, представленные в числовой форме. Сначала вы проходите половину пути. Затем преодолеваете половину оставшегося пути, то есть 1/4 общего расстояния, и у вас остается еще 1/4 пути. Далее половина оставшегося расстояния составляет 1/8, затем 1/16, затем 1/32. Таким образом, ваше перемещение к магазину можно представить в следующем виде:


1/2 + 1/4 + 1/8 + 1/16 + 1/32 + …


Сложив десять первых членов этой последовательности, вы получите 0,999. Сумма первых двадцати членов последовательности составит 0,999999. Другими словами, вы действительно приближаетесь – очень-очень приближаетесь – к магазину. Тем не менее, сколько бы членов этой последовательности вы ни сложили, вы никогда не получите 1.

Парадокс Зенона во многом напоминает другую головоломку: равна ли периодическая десятичная дробь 0,99999… единице?

Я видел, как люди едва не вступали в драку из-за этого вопроса[67]. По этому поводу ведутся жаркие споры на самых разных веб-сайтах, от страниц фанатов игры World of Warcraft («Вселенная Варкрафта») до форумов, посвященных творчеству Айн Рэнд. Наша естественная реакция на аргументы Зенона такова: «В конечном счете вы непременно получите свое мороженое». Но в данном случае интуиция подсказывает совсем иной ответ. Большинство людей[68] (если потребовать от них однозначного ответа) скажут, что 0,9999… не равно 1. Это число даже не похоже на единицу, это уж точно. Оно меньше единицы. Однако ненамного меньше! Подобно любителю мороженого в парадоксе Зенона, оно все ближе и ближе подходит к своей цели, но похоже на то, что так и не доберется до нее.

И все-таки преподаватели математики, в том числе и я сам, скажут им: «Нет, это число равно 1».

Как мне привлечь хоть кого-нибудь на свою сторону? Один хороший способ – привести следующие доводы. Все знают, что:


0,33333… = 1/3.


Умножьте обе стороны на 3 – и получите такой результат:


0,99999… = 3/3 = 1.


Если это вас не убедило, попытайтесь умножить 0,99999… на 10, для чего нужно просто перенести десятичную запятую на одну позицию вправо.


10 × (0,99999…) = 9,99999…


Теперь надо вычесть раздражающее десятичное число из обеих сторон равенства:


10 × (0,99999…) − 1 × (0,99999…) = 9,99999… − 0,99999…


Левая сторона равенства представляет собой просто 9 × (0,99999…), поскольку 10 умножить на что-то минус что-то равно 9 умножить на вышеупомянутую величину. А в правой части равенства нам удалось удалить ужасное бесконечное десятичное число, после чего у нас осталось просто 9. В итоге мы получим:


9 × (0,99999…) = 9.


Если 9 умножить на что бы то ни было равно 9, тогда это что-то должно быть равно 1, не так ли?

Как правило, чтобы убедить людей, подобных доводов вполне довольно. Но будем честны: в этой аргументации кое-чего не хватает. В действительности приведенные выше доводы не устраняют тревожную неопределенность, вызванную заявлением, что 0,99999… = 1; напротив, они представляют собой своего рода алгебраическое устрашение: «Вы верите в то, что 1/3 равно 0,3 в периоде, не так ли? Ведь вы действительно верите в это?»

Или еще хуже: скорее всего, вас убедили мои доводы, в основе которых лежало умножение на 10. Но как насчет следующего довода? Чему равно:


1 + 2 + 4 + 8 + 16 + …?


Здесь многоточие означает, что мы продолжаем вычислять сумму бесконечно, каждый раз прибавляя величину, которая в два раза больше предыдущей. Очевидно, что эта сумма должна быть бесконечной! Однако довод, во многом напоминающий на первый взгляд корректный аргумент в отношении 0,99999…, как будто говорит об обратном. Умножьте представленную выше сумму на 2 – и получите:


2 × (1 + 2 + 4 + 8 + 16 + …) = 2 + 4 + 8 + 16 + …


Этот результат очень похож на исходную сумму; на самом деле это и есть исходная сумма (1 + 2 + 4 + 8 + 16 + …), но без 1 в начале, а это значит, что 2 × (1 + 2 + 4 + 8 + 16 + …) меньше (1 + 2 + 4 + 8 + 16 + …). Другими словами:


2 × (1 + 2 + 4 + 8 + 16 + …) – 1 × (1 + 2 + 4 + 8 + 16 + …) = −1.


Однако, выполнив упрощающие преобразования, левую сторону этого равенства можно привести к той самой сумме, с которой мы начали, получив при этом такой результат:


1 + 2 + 4 + 8 + 16 + … = −1.


Именно в это вы готовы поверить?[69] В то, что прибавление все больших и больших чисел до бесконечности приведет вас в область отрицательных чисел?

А вот еще более бредовая идея. Чему равно значение бесконечной суммы:


1 − 1 + 1 − 1 + 1 − 1 + …?


Кто-то может сразу же сделать вывод, что эта сумма составляет:


(1 − 1) + (1 − 1) + (1 − 1) + … = 0 + 0 + 0 + …,


и заявит при этом, что сумма множества нолей, пусть и бесконечно большого, должна быть равной 0. С другой стороны, 1 − 1 + 1 – это то же самое, что 1 − (1 − 1), поскольку отрицательное значение отрицательного числа – число положительное. Многократное применение этой операции позволяет нам переписать нашу сумму в таком виде:


1 − (1 − 1) − (1 − 1) − (1 − 1) − … = 1 − 0 − 0 − 0 − …


Данный результат точно так же требует вывода, что данная сумма равна 1!

Так чему же равна эта сумма, 0 или 1? Или она в половине случаев равна 0 и еще в половине случаев – 1? Создается впечатление, что это зависит от того, где вы остановитесь, но ведь бесконечные суммы никогда не останавливаются!

Не делайте пока никаких выводов, потому что на самом деле все еще сложнее. Предположим, наша загадочная сумма имеет значение T:


T = 1 − 1 + 1 − 1 + 1 − 1 + …


Умножение на −1 обеих сторон этого уравнения дает следующий результат:


T = −1 + 1 − 1 + 1 − …


Однако сумма с правой стороны уравнения – это именно то, что вы получите, если возьмете исходную сумму, равную Т