Цитаты из книги «Математическое мышление» Джо Боулер📚 — лучшие афоризмы, высказывания и крылатые фразы — MyBook. Страница 51

Цитаты из книги «Математическое мышление»

509 
цитат

После этого учителя выделяют «любимые ошибки». Они должны объяснить ученикам, что ищут свои самые частые ошибки (серьезные, а не числовые погрешности). Затем дети могут рассказать об этих ошибках на уроке и начать в классе обсуждение: почему это ошибки и чем они обусловлены. В этот момент целесообразно подкрепить важные сигналы — в частности, сказать ученику, что ошибка принесла ему пользу, поскольку в этот момент он напряженно размышлял, что привело к активизации и росту его мозга. Кроме того, полезно рассказывать об ошибках и обсуждать их. Если один ученик делает ошибку, мы знаем, что другие тоже могут ее допустить; поэтому возможность проанализировать ошибку приносит пользу всем.
24 октября 2019

Поделиться

предложить ученикам сдать свою работу в любом виде, даже тест (хотя чем реже мы проверяем уровень знаний учеников, тем лучше;
24 октября 2019

Поделиться

Когда ученики получают похвалу за какое-то качество (например, интеллект, если они хорошо справились с каким-то заданием), поначалу они чувствуют себя хорошо. Но когда они позже сталкиваются с неудачами (а они бывают у каждого), для них это означает, что на самом деле они не так уж умны.
24 октября 2019

Поделиться

ученики с фиксированным мышлением менее склонны пробовать свои силы в более тяжелой работе или изучении более сложного предмета: они боятся, что совершат ошибку и их уже не будут считать умными. Ученики с мышлением роста берутся за трудную работу и воспринимают ошибки как вызов и стимул прилагать еще больше усилий.
24 октября 2019

Поделиться

Кроме того, получены новые данные (подробнее см. главу 2) о том, что, когда ученики с мышлением роста совершают ошибки, активность их мозга более позитивна; при этом у них активизируется больше участков мозга, они уделяют больше внимания ошибкам и исправляют их
24 октября 2019

Поделиться

меня не покидало ощущение, что я ноль в математике… Не могу описать словами
12 октября 2019

Поделиться

Сайен Бейлок и ее коллеги изучали мозг участников исследования с помощью МРТ и пришли к выводу, что математические факты хранятся в кратковременной памяти. Но когда ученики находятся в состоянии стресса (например, если им приходится отвечать на вопросы в условиях ограничения времени), кратковременная память блокируется и ученики не могут получить доступ к математическим фактам, которые они знают
11 октября 2019

Поделиться

Похвала доставляет удовольствие. Но когда человека хвалят за его личные качества («Ты такой умный!), а не за то, что он сделал («Отличная работа!»), у него создается впечатление, что его способности неизменны. Сказать ученику, что он умный, — значит обречь его на проблемы в будущем. Когда в школе и в жизни ученики терпят неудачу в решении многих задач (что, повторю, вполне естественно), они оценивают себя, решая, умны они или нет. Вместо того чтобы хвалить учеников за умственные способности или другое личное качество, лучше сказать так: «Замечательно, что ты этому научился» или «Ты действительно хорошо все продумал».
8 октября 2019

Поделиться

стрелками обозначены методы, которые необходимо изучить, а в ячейках отражены изучаемые концепции. В нижнем левом углу представлен метод счета. Когда ученики учатся считать, они запоминают порядок и названия чисел, но у них формируется и концепция числа — представление о нем. В самом начале обучения сложению ученики осваивают метод «продолжение счета». Он используется, когда заданы два числа (например, 15 и 4). В этом случае вы осваиваете сложение так: сначала считаете до 15, а затем продолжаете счет — 16–17–18–19. Изучая метод продолжения, ученики усваивают понятие суммы. Речь не о методе сложения, а о самой идее. На следующем этапе можно научиться складывать группы чисел, например три числа 4. Когда ученики осваивают этот навык, у них формируется концепция произведения. Здесь снова речь не о методе (в данном случае умножения), а об идее. Концепции числа, суммы и произведения требуют глубоких размышлений. Изучение методов, например сложения и умножения, должно быть не самоцелью, а элементом концептуального понимания чисел, суммы и произведения, а также их соотношения
6 января 2020

Поделиться