Читать книгу «Программирование Cloud Native. Микросервисы, Docker и Kubernetes» онлайн полностью📖 — Ивана Портянкина — MyBook.
image

Выбор Go и Java

Go как нельзя лучше подходит для микросервисов, особенно в качестве очень коротких, простых и быстрых процедур обработки данных. Этот язык специально был создан простым по синтаксису, в нем по сути не присутствует полноценная система объектно-ориентированного программирования, и он во всем приглашает к простому, короткому, быстрому коду.

Крайне полезно то, что Go компилируется в машинный код для целевой операционной системы, то есть работает так эффективно, как это возможно без специальных оптимизаций. Работая в облаке, где каждую минуту исполнения, мегабайт оперативной памяти, использованную энергию необходимо будет оплатить, любые промежуточные этапы, использующие ресурсы, могут быть чуть дороже, чем интерпретируемые языки, например Python, или языки на основе виртуальных машин Node. js и Java, даже если они быстро компилируются (just in time, JIT) в машинный код в процессе работы. Это «чуть дороже», помноженное на масштаб и количество пользователей (что в конечном итоге основной показатель успеха вашей идеи, стратегии и качества реализации), может вылиться в порядочные траты. Тем более что некоторые сложные участки программ на основе виртуальных машин оптимизировать крайне тяжело и они будут исполняться в разы медленнее.

Конечно, компиляция и сборка в машинный код всегда представляет собой проблему переносимости на конкретную платформу – что именно вы ожидаете на сервере в облаке, конкретный тип Linux? А если облачного провайдера нужно будет поменять или вы решите перейти на частное облако или свой собственный кластер? Это было бы огромным препятствием, но, благодаря границам контейнеров Docker, вы можете практически полностью изолировать детали реализации, настройку системы и ее пакетов и библиотек, от непосредственной операционной системы серверов в облаке или кластере. По сути, контейнеры полностью избавляют вас от зависимости от деталей облака и операционных систем, лишь бы Docker или подобная система контейнеров поддерживалась на серверах, что сейчас просто подразумевается как само собой разумеющееся требование к провайдеру облачных услуг.

Язык и платформа Java чрезвычайно популярны для классических корпоративных приложений, практически идеально переносятся между платформами и операционными системами, а количество фреймворков для веб-приложений, сервисов и микросервисов поражает воображение. Начать разработку может быть не так быстро и эффектно как на Go, но если у вас изощренный и сложный домен (domain) приложения (то есть описание области, в которой ваше приложение будет действовать), мощь объектного подхода, продуманный дизайн и стабильность языка, хорошо известные шаблоны проектирования и практики работы, и сотни разнообразных инструментов Java могут быть как нельзя кстати.

Вдобавок, главные игроки экосистемы Java и платформ для этого языка крайне заинтересованы оставить этот язык в лидерах разработки даже в мире микросервисов. Идет большая работа по уменьшению требований к оперативной памяти, размера виртуальной машины JRE, и разбиения платформы на модули, позволяющего исключить из приложения ненужные мегабайты библиотек JAR. Посмотрите на виртуальную машину GraalVM от Oracle, оптимизирующей запуск программы, и компилирующей байт-код в бинарный, или библиотеки Quarkus и Microprofile, создающие минимальные микросервисы.

Сторонние библиотеки и инструменты

Все разработчики рано или поздно сталкиваются с похожими задачами и частыми проблемами. Так как хороший разработчик (и человек разумный в целом) как правило ленив, он пытается сразу же решить задачу так, чтобы никогда больше с ней не сталкиваться в будущем. Количество же инструментов, библиотек, блогов и стартапов в такой популярной и растущей стремительными темпами области как облачные вычисления просто поражает воображение. Многие задачи решены, решаются, а затем немедленно заново решаются с различной степенью эффективности, качеством документации и уровнем поддержки готовых решений.

Мы будем использовать многие из них, но это не совет на будущее и не «лучший инструменты или библиотека из всех». Это лишь способ быстрее научиться главному, не изобретая уже много раз решенные вещи. Вполне может быть, что упомянутая в книге библиотека или инструмент выйдет из моды, обнаружится критические просчеты или просто будет заменен более удачным конкурентов. В это случае лишь поиск по основным тематическим сайтам поможет вам заменить их. Основы же останутся прежними.

Основные провайдеры облачных услуг – Amazon, Google, Microsoft

Основные технологии (контейнеризация, Docker, оркестрация сервисов Kubernetes) концепции приложений, созданных для облака Cloud Native, уже практически гарантированно работают на всех провайдерах облака, будь это три кита облачных вычислений Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, российские #CloudMTS и SberCloud, или провайдеры меньших размеров, часто также предлагающих интересные цены и услуги (Digital Ocean). Для нас же это означает, что на данный момент концепция стала стандартом, который очень широко поддерживается, и будет поддерживаться на многие годы вперед, а значит изучение ее основ, и технологий в ней, даст нам ключи к эффективной работе с любыми облаками. Созданные же единожды приложения можно будет и переносить между облаками, и запускать в гибридном облаке, работающем на нескольких провайдерах одновременно.

Дополнительные форматы книги на ipsoftware.ru

Я намеренно создал книгу, используя современные независимые платформы для издания – LeanPub и российскую Ridero. Основная цель – снизить издержки классического издателя, в конечном итоге составляющие больше половины стоимости электронной книги, и особенно бумажной версий книги (в этом случае практически вся стоимость составляет траты на печать, хранение и распространения тиража). Книга также намеренно сделана короткой, учитывая огромную доступность справочной информации в Интернете, и цена ее будет минимально разрешенной электронными магазинами.

Различные платформы предоставляют разные уровень сервиса, форматы книги, и инструменты для работы с ней. База книги создана в формате Markdown на платформе LeanPub, сверстана для русских площадок с помощью Ridero. Вы можете найти и скачать все варианты и форматы книги на моем сайте www.ipsoftware.ru, особенно если вас не устроил изначально полученный вами вариант или формат. Более того, книга на сайте будет постоянно обновляться и меняться, в зависимости от найденных ошибок и необходимых добавлений. Обновить печатную версию к сожалению не так просто, но если вы уже купили и прочитали печатную версию, вы найдете историю изменений книги на сайте и можете прочитать обновленные главы в электронном виде.

Открытый текст. Благодарности

Эта книга создана открытой (free open source) и ее текст доступен на GitHub для обновлений и изменений (репозиторий ivanporty/cloud-docker-k8s-book). Если вы увидели ошибку, неточность, или чувствуете, что какого-то материала не хватает, открывайте запрос (pull request), я его проверю, и ваши изменения тут же появятся в электронных версиях книги. Я благодарю несколько человек, которые внесли исправления и изменения в книгу (это их учетные записи на GitHub):

– AdamPirson

– lex111 (Alexey Pyltsyn)

– alg (Aleksey Gureiev)

1. Приложения, созданные для облака – концепция Cloud Native

«Технологии Cloud Native позволяют создавать сложные системы в динамичной, современной среде частного, гибридного или коммерческого облака Cloud. Воплощают такой подход в жизнь контейнеры, сервисные сетки (service mesh), микросервисы, неизменная инфраструктура и декларативный способ управления ресурсами.»

Устав фонда Cloud Native Foundation, управляющего стандартами и общим направлением концепции.

Современная разработка классических приложений, вспомогательных сервисов, мобильных приложений и их серверных компонентов, и программного обеспечения в целом подразумевает постоянные изменения функциональности. Часто новые функции появляются несколько раз в день. При этом обновления, исправления ошибок и перезапуски не должны останавливать сервис и доступ к его функциям ни на секунду. Практически весь мир объединен глобальным скоростным доступом в Интернет, и одновременный доступ не только миллионов, но сотен миллионов пользователей к удачному приложению и сервису больше не является прерогативой технических гигантов, таких как Google, Apple и Yandex, и вполне доступен маленькому стартапу и индивидуальному программисту. Приложение должно быть готово к пиковой нагрузке, не уменьшая качество своего сервиса. Именно таким и будет приложение, с самого начала созданное для работы в облаке.

Основные положения концепции Cloud Native

Возможность быстро и эффективно наращивать функциональность приложения, не переписывая и не ломая уже существующие функции и компоненты, а также их взаимодействия, требует особого подхода к разработке в общем, и к выпуску готовых релизов и их запуску на серверах в частности. Более того, для каждой задачи хорош свой инструмент, что в мире программирования означает, что для каждой задачи чуть лучше может подходить свой собственный язык, его экосистема, и набор библиотек.

Реализовать это возможно с помощью так называемых «микросервисов» (microservices), слабо связанных между собой компонентов единой системы или приложения. Они обмениваются данными через сеть, используя стандартные сетевые протоколы, как правило это протокол HTTP и стандарт REST. Разработка и обновление одного микросервиса никак не затрагивает остальные части системы. Микросервисы связываются друг с другом через сетевые порты и абстрактные протоколы, и каждый из них может быть написан на любом подходящем языке и технологии. Обновляются и перезапускаются они также независимо. Микросервисы часто противопоставляются единому, большому серверному приложению, так называемому «монолиту» (monolith).

Запуск на одной операционной системе разнородных приложений, написанных с помощью самых разнообразных технологий, как правило не сулит в себе ничего хорошего из-за конфликта системных зависимостей, библиотек и правил доступа. Эту проблему блестяще решают контейнеры (containers). Контейнеры – легкая форма виртуализации, они надежно изолируют приложения друг от друга, и в отличие от виртуальных машин, не требуют полной установки отдельной операционной системы. Запуск и остановка контейнеров практически мгновенна. Множество разнородных модулей и библиотек теперь смогут ужиться в одном сервере Linux, не мешая друг другу, и не требуя для запуска минут, как требуют полноценные виртуальные машины.

Одно из преимуществ приложения, разбитого на модули и микросервисы, работающие из собственных контейнеров – тонко настроенное горизонтальное масштабирование. Появляется возможность выделить наиболее нагруженную часть системы и запустить для ее сервисов и компонентов столько экземпляров, сколько необходимо для обработки текущей нагрузки. Для этого требуется практически неограниченная вычислительная мощность, растущая по требованию (ее еще называют эластичной) – эту мощь обеспечивают коммерческие провайдеры облака, такие как Google Cloud (GCP), Amazon Web Services (AWS), SberCloud, Yandex.Cloud.

Наконец, мощное, динамично меняющееся приложение, состоящее из сотен распределенных компонентов, соединенных между собой по сети, требует постоянного надзора и очень сложного управления, в том числе и для масштабирования и обновления компонентов. Здесь главную роль играет оркестратор контейнеров (orchestrator), самым популярным среди них без сомнения является Kubernetes. Для наблюдения трафика между компонентами, задержек, графиков исполнения запросов, и сбора и анализа журналов (logs) существуют целые комплексы программных решений, хорошо интегрированных с Kubernetes.

Первые выводы

Подводя краткий итог, мы поставили задачу создать максимально гибкое, устойчивое к отказам, всегда доступное приложение, способное выдержать пиковые нагрузки, и увидели, как эта задача может быть решена. Именно описанный подход и методы являются основой приложения, созданного для работы и развертывания в облаке (cloud native). Вот его ключевые атрибуты:

– Микросервисы (microservices) как способ максимально возможной слабой связи между подсистемами приложения. По сути это компонентная разработка, с прицелом на абсолютно независимый друг от друга процесс разработки, свободный выбор технологии, а также независимые выпуски новых версий и их развертывание на сервере.

– Контейнеры (containers) – легкая виртуализация в пределах одной операционной системы (как правило Linux), не требующая «тяжелых» виртуальных машин, включающих в себя полную отдельную операционную систему. Контейнеры позволяют множеству микросервисов незаметно друг для друга работать на одном сервере, в пределах одной операционной системы.

...
7