Если говорить более современным языком, Ухтомский описал группы нервных клеток, которые попеременно включаются в работу, отражая текущую деятельность мозга. Когда мы двигаемся, работают моторные структуры мозга (есть даже специальные мотонейроны), а когда мы о чем-то думаем, активны очень обширные области, связанные с вниманием, извлечением информации из памяти.
Но давайте разберемся, откуда клетки знают, что им надо поработать вместе для решения какой-то задачи?
Сеченов и другие исследователи второй половины XIX века активно развивали идею о том, что есть «встроенные» от рождения рефлекторные дуги. Сейчас мы знаем, что их свойства определяются генетикой. В норме эти дуги у всех работают одинаково. Вспомните, как невролог легонько ударял молоточком чуть ниже вашей коленной чашечки… и стопа вдруг сама подлетала вверх. Так происходило потому, что раздражалось сухожилие четырехглавой мышцы бедра (и нога разгибалась).
Причем это правило работает для всех мышц. Если ударить молоточком по сухожилию соответствующей мышцы, она сократится.
И для этого достаточно всего двух нервных клеток: чувствительного и двигательного нейронов. В нервных цепях подобных рефлексов еще включаются вставочные нейроны, но это отдельная огромная тема, поэтому на данном этапе повествования мы ее опустим.
Нейроны устанавливают связи друг с другом еще до рождения человека, в утробе матери. И не просто так. Судьба многих нервных клеток предопределена. Бабуля-природа распорядилась, чтобы некоторые клетки оставались связанными друг с другом на всю жизнь и обеспечивали врожденные рефлексы.
Но мы же понимаем, что в процессе жизни мы обучаемся, регулярно узнаем что-то новое, да и новые связи между клетками образуются постоянно.
Иван Петрович Павлов обнаружил удивительное явление – условные рефлексы. Он заметил, что у животных (так же как и у человека) безусловные рефлексы могут сопрягаться с некоторыми раздражителями.
Врожденные дуги (совместно работающие группы клеток) могут вдруг включаться в работу при предъявлении стимула. У собаки есть врожденный безусловный рефлекс, связанный со слюноотделением. Чтобы запустился такой рефлекс, нужен запах пищи (он выступает здесь в роли молоточка невролога). Когда собака ощущает запах мяса, слюна вырабатывается сама, чтобы желудку животного не пришлось справляться с сухим комком пищи (бабуля-природа и тут все автоматизировала). Если же в момент предъявления пищи постоянно подавать какой-то звуковой сигнал (например, звонить в колокольчик), через некоторое время слюна у собаки начнет вырабатываться просто при звоне колокольчика.
Позднее Беррес Фредерик Скиннер, следуя по стопам Павлова, предложил теорию так называемого оперантного обусловливания, когда подкрепляется то спонтанное поведение, которое признается желательным.
Все мы постоянно совершаем ошибки. В детстве кто-то пытался засунуть пальцы в розетку, другие случайно съедали красный перец и потом выпивали литры воды, чтобы заглушить жжение во рту, и так далее. Вряд ли кто-то захочет второй раз притронуться к оголенным проводам или съесть еще немного жгучего перца. Во всех этих случаях реакция организма человека формируется по методу проб и ошибок. И за счет нее закрепляется определенный рефлекс: среда как бы оперирует нашим поведением.
Получается, что, влияя на результат поведения и его последствия, мы можем модифицировать это самое поведение.
Важно отметить, что эта схема используется как при создании государственных систем, так и в управлении. Вообще, с ее помощью можно менять поведение человека в нужном направлении. Например, торговая сеть, чтобы увеличить прибыль, может поощрять продажу определенной категории товаров (например, риса, а не вермишели, предлагая существенные скидки на другие важные товары, которые обычно покупают вместе с рисом). Эта же модель прекрасно работает с детьми, когда нужное родителям поведение (например, усидчивость в школе) подкрепляется сладостями, походом в аквапарк, покупкой нового смартфона и так далее. Подробнее об управлении поведением в нейроэкономических моделях речь пойдет в третьей части книги.
Вслед за Скиннером и Павловым плеяда физиологов ринулась искать те нервные клетки, которые отвечают за обучение. И их нашли!
Мы с вами уже выяснили, что часть клеток в организме человека знает о своей будущей функции изначально. Но есть и другие клетки, специализация которых определяется чуть позже, по результатам опыта конкретного человека.
Для формирования каждого навыка у нас есть физиологические окна возможностей – периоды времени, когда области мозга наиболее восприимчивы к тем или иным стимулам. В один из таких критических периодов и развивается способность нервных клеток зрительной коры хорошо распознавать образ (частично это задано генетикой). Известно, что при рождении у ребенка уже есть предрасположенность в первичной зрительной коре отображать воспринимаемый образ. Наиболее активный рост первичных и вторичных областей зрительной коры происходит до трех лет.
В 2011 году Синдзи Нишимото с коллегами с помощью функциональной МРТ (фМРТ) смогли продемонстрировали, как зрительная кора «видит» различные изображения. Исследователи, конечно, видели не точное отображение объекта, а подобие его силуэта, собранного из совокупности активированных клеток.
Таким образом, по активности мозга можно понять, что видит человек в тот или иной момент.
В действительности исследователи показывали не статичные изображения, а кадры фильмов в динамике, наблюдая при этом изменяющуюся активность.
Тут стоит сделать оговорку. Подобный способ визуализации не является технологией «чтения мыслей». Дело в том, что декодировать сложные комплексные функции (такие как наша речь, мыслительные акты) невероятно сложно. И вот почему.
Природа наделила нас возможностью развивать вторую сигнальную систему (по И. П. Павлову). Эта система называется речевой. Вообще, чтобы подумать о чем-то, нужно сначала назвать это, придумать/подобрать слово. Чтобы сформулировать мысль, нужно скомбинировать слова. Чтобы лучше понять процессы сборки мозгом целостных образов, давайте коротко рассмотрим, как устроены механизмы восприятия и усвоения новых слов.
Наш мозг поделен на огромное количество функциональных областей, но все они работают как единая система. У нас есть первичные области коры, которые воспринимают только один вид информации, например зрительный образ. Есть вторичные и третичные области, они обобщают несколько параметров стимулов. Третичные области называют также ассоциативными: внутри них смешиваются сигналы первичных и вторичных областей (происходит ассоциирование). А это уже позволяет собрать в конечном итоге некий целостный образ. Представляете, как сложно!
Иными словами, в третичных областях коры есть клетки, которые могут ассоциировать друг с другом сигналы, идущие от разных органов восприятия. Эти клетки собирают информацию от слуховых зон, зрительных областей, обонятельной системы.
Поскольку в детстве родители кодировали информацию словами, мы научились сопоставлять с ними образы. К примеру, нам показывают игрушку и называют ее («это – машинка»). В затылочных областях коры (восприятие зрения) активизируются клетки для распознавания образа игрушки. В височных областях коры (восприятие слуха) – клетки, реагирующие на звуковой стимул (в нашем случае – название игрушки). В ассоциативных областях сопоставляются разные параметры стимула, и так мы получаем общий образ игрушечной машинки, соответствующий определенному внешнему виду, тактильным ощущениям от него, слову «машинка», его звучанию и так далее. Под это дело даже формируется «речевой» нейрон.
По сути, мозг обучается новым словам, используя все те же условные рефлексы, только вместо колокольчика и еды у нас – зрительные образы сложных условно-рефлекторных комплексов. Морковь – оранжевая. Зайчик – с двумя ушками. Чем больше ассоциированных повторений, тем прочнее формируется сеть из связанных клеток в мозге. То есть чем чаще мама говорила вам «смотри, это морковь, она оранжевая», тем крепче это оседало в мозге.
Важно понимать, что любой опыт в некотором смысле «перепаивает» наши связи. Мозг очень пластичен, он, как мягкая глина, подстраивается под среду (оставляя на себе ее отпечатки). Даже читая этот текст, вы перестраиваете связи между клетками мозга.
Более того, в ассоциативных областях коры формируется универсальный способ распознавания образов по ключевым элементам. В детстве мы видели игрушечного зайчика с серыми ушами, в документальных фильмах о природе – настоящего зайца. А еще нам достаточно показать два пальца (имитирующих уши зайца), и мы распознаем привычный с детства образ. Для ассоциативной коры длинные уши и являются этим самым ключевым стимулом. В мозге формируется связанная группа клеток (с контрольным центром в ассоциативной коре), которая реагирует на любые типы зайцев. Вот так клетки и работают в ансамбле.
Для того чтобы закрепить понимание того, как функционирует эта данная физиологическая схема, давайте рассмотрим пример поинтереснее. Многие из нас любят пить кофе. И сейчас читатели наверняка ощутили в своем воображении аромат этого напитка. Ассоциативные области собирают информацию из разных отделов мозга. Именно поэтому рисунок чашки с кофе или само слово «кофе» ассоциируются с конкретным ароматом. Запах мы на самом деле не чувствуем, но «речевой» нейрон (при слове «кофе») начинает автоматически привлекать из памяти информацию, связанную с работой обонятельной системы. Это крайне упрощенная схема, но работает все приблизительно так.
Логичным образом возникает вопрос: как мозг отличает реальный запах кофе от воображаемого?
Здесь ситуация чуть сложнее, но полагают, что сигнал подавляется, так как не стимулируются сенсорные системы. Химические раздражители (в виде молекул кофеина) не попадают на обонятельные рецепторы, и мозг не получает от них сигнал. Ассоциативные нейроны коры просто извлекают информацию из памяти. Это позволяет не превращать работу мозга в полную мешанину.
А вот во сне или в случае галлюцинаций торможение информации, приходящей от сенсорных систем, отключается, поэтому мы видим, слышим и чувствуем то, чего нет.
Физиологи в связи с этим любят вспоминать слова великого И. М. Сеченова, который писал:
Нет никакой разницы в процессах, обеспечивающих в мозгу реальные события, их последствия или воспоминания о них.
Мы рассмотрели нейрофизиологическую парадигму доминант, которая сформировалась на рубеже XIX–XX столетий. В действительности «учение о доминанте» А. А. Ухтомского не только не потеряло актуальности, но и продолжает развиваться сегодня (хотя и в более современных интерпретациях).
Далее в этой книге мы рассмотрим еще несколько парадигм, чтобы сформировать представление о том, как ученые видят мозг сегодня.
О проекте
О подписке