Читать книгу «Тюнинг автомобиля своими руками» онлайн полностью📖 — Игоря Скрипника — MyBook.
image




Однако и в случае впускного коллектора с пространственно-временной симметрией поступающая в цилиндры двигателя горючая смесь при работе на частичных нагрузках также может существенно отличаться по составу. Причина этого явления в том, что при частичном открытии дроссельной заслонки происходит отклонение потока горючей смеси от прямолинейного движения. В результате такого отклонения наиболее обогащенная смесь поступает в те цилиндры, в сторону которых поток отклоняется. Уменьшить влияние положения дроссельной заслонки на распределение смеси по цилиндрам позволяют предварительный подогрев смеси от стенок впускного тракта и изменение направления потока топливо-воздушной смеси. Подогрев стенок ускоряет процесс испарения бензина и способствует образованию смеси более равномерного состава. Обычно подогрев стенок впускного тракта осуществляется или жидкостью системы охлаждения двигателя, или за счет теплоты выпускного коллектора, когда системы впуска и выпуска располагаются с одной стороны блока цилиндров.

Изменение направления воздушного потока для обеспечения более равномерного состава смеси на впуске в цилиндры использовалось, в частности, на четырехцилиндровых бензиновых двигателях М40, устанавливавшихся на автомобили BMW 316i и 318i до 1993 года. После воздушной заслонки воздух поступал в центральную часть впускного коллектора, расположенного над клапанными форсунками (инжекторами), откуда распределялся по цилиндрам через впускные патрубки определенной длины, изменявшими направление воздушного потока на 180°.

И все же внутреннее сопротивление и трение о стенки движущегося потока воздуха – это только один, хотя и немаловажный, аспект при рассмотрении впускного тракта. Для улучшения коэффициента наполнения nv намного важнее использовать возникающие во впускной системе волновые явления. Эти волновые явления возникают во впускных трубопроводах в результате цикличного поступления воздуха в цилиндры двигателя. Когда впускная система является общей для нескольких цилиндров, то волновые явления во впускном патрубке одного цилиндра сказываются на колебательных процессах в патрубках остальных цилиндров. И чем больше цилиндров объединяет одна впускная система, тем труднее выполнить ее настройку, в том числе и по причине ограниченности объема моторного отсека.

Конструкция эффективной впускной системы часто является результатом сложных расчетов волновой системы, которые непременно должны проверяться экспериментально. Крайне важной для характеристики мощности и крутящего момента оказывается длина впускного (волнового) трубопровода. Принципиальным при этом является то, что короткие впускные трубопроводы смещают максимум наполнения, характеризуемый коэффициентом наполнения nv, в область высоких частот вращения KB, а длинные впускные трубопроводы обеспечивают хорошее наполнение и соответственно высокий крутящий момент при низких частотах.

С учетом этого двигатели гоночных автомобилей, рассчитанные на максимальную мощность, снабжаются, как правило, относительно короткими впускными трубопроводами. Двигателям грузовых автомобилей, которые должны развивать хорошую силу тяги при низкой частоте вращения KB, требуются волновые трубопроводы большей длины. При этом длинные трубопроводы улучшают наполнение цилиндров в области низкой частоты вращения, однако при увеличении частоты вращения KB кривая мощности становится более пологой (рост мощности замедляется), а крутящий момент может значительно снизиться. Таким образом, при жестких, нерегулируемых впускных трубопроводах имеет место обычная альтернатива: или хороший крутящий момент в диапазоне низких частот вращения и пониженная номинальная мощность, или высокая номинальная мощность и уменьшенная сила тяги при низких частотах вращения КВ.

В некоторых случаях впускные волновые трубопроводы, расположенные перед впускными клапанами, берут свое начало из общего впускного коллектора, где они имеют форму направляющего патрубка. Например, V-образный 8-цилиндровый двигатель фирмы Chevrolet, подвергнутый тюнингу фирмой Marcos, имеет отдельную впускную систему для каждого блока цилиндров. Волновые трубопроводы сравнительно длинные и берут начало из соответствующих общих впускных коллекторов, расположенных над блоками цилиндров. Поступление воздуха во впускные коллекторы осуществляется по трубопроводам, заборники которых расположены по обе стороны радиатора системы охлаждения. Это позволяет улучшить наполнение цилиндров двигателя за счет скоростного напора ветра, возникающего при большой скорости движения автомобиля.

Иногда волновым впускным трубопроводам придается коническая форма (на пути от коллектора к цилиндру поперечное сечение впускного трубопровода уменьшается), благодаря чему по мере приближения воздушного потока к впускным клапанам происходит его ускорение. Такая конструкция впускного тракта реализована, в частности, у 4-цилиндрового 16-клапанного двигателя фирмы Opel (Manta 400 2.4E-4V).

Исходя из сказанного выше, в двигателях гоночных автомобилей, как правило, отказываются от взаимного влияния волновых процессов, возникающих при наполнении цилиндров, и впускной патрубок каждого цилиндра настраивают индивидуально. При этом заборник впускного трубопровода, имеющего необходимую для получения желаемой характеристики мощности длину, начинается в направляющем воздушный поток коробе, расположенном снаружи автомобиля, или же в настолько большом коллекторе, расположенном в моторном отсеке, в котором цикличность работы цилиндров не может вызвать колебаний воздушного потока. Таким образом, короткая длина впускных волновых трубопроводов гоночных двигателей свидетельствует о настройке этих двигателей на максимальную мощность.

Наглядными примерами использования подобных конструктивных решений в гоночных автомобилях являются двигатели Ford Cosworth V8 и оппозитный Ferrari 12, имеющие рабочий объем 3 л.

У двигателей легковых автомобилей в зависимости от того, сколько цилиндров объединяет один впускной коллектор, в результате наложения колебаний газа возникают различные перепады давления. Последние, в свою очередь, обусловливают существенно отличающиеся характеристики крутящего момента у различных конструкций двигателей. Например, 3-цилиндровые двигатели с общим впускным коллектором имеют очень ранний и высокий максимум крутящего момента, который при возрастании частоты вращения KB резко падает. Это указывает на то, что при низкой частоте вращения наполнение цилиндров очень хорошее, тогда как при высокой, наоборот, неудовлетворительное. 4-цилиндровые двигатели имеют более широкий диапазон частоты вращения KB, в котором сохраняется большое значение крутящего момента. Момент рано начинает расти, но достигает своего максимума большей частью уже после некоторого промежуточного пика при повышенной частоте вращения.

6-цилиндровые двигатели имеют слабый рост крутящего момента, выразительный максимум которого достигается лишь при высокой частоте вращения КВ. 5-цилиндровые двигатели по характеристике крутящего момента занимают промежуточное положение между 4- и 6-цилиндровыми двигателями.

В. Н. Степанов делает вывод, что идеальным для автомобильного двигателя был бы впускной трубопровод переменной длины, который позволяет развивать повышенную мощность при высокой частоте вращения KB (длина трубопровода минимальная) и максимальный крутящий момент в диапазоне низких и средних частот вращения (длина трубопровода увеличенная). То есть требуются впускные трубопроводы, которые имели бы оптимальную длину при любой частоте вращения KB двигателя. Тогда аналогично тромбону можно было бы вдвигать трубы одна в другую, с тем чтобы бесступенчато изменять длину волнового трубопровода от впускного клапана до впускного коллектора.

В качестве примера на рисунках 5 и 6 показаны схемы систем впуска с регулируемой длиной волновых трубопроводов для 6-цилиндровых двигателей с различным расположением цилиндров. В приведенных схемах один резонатор объединяет группу из трех цилиндров, вспышки в которых следуют равномерно через 240° ПКВ. Длина и площадь поперечного сечения впускных патрубков, берущих начало из резонаторов, обычно принимаются такими же, как и в штатной системе впуска. Для уменьшения сопротивления на впуске начальная часть впускных патрубков выполняется в форме раструба.


Рис. 5. Схема системы впуска одноблочного дизельного двигателя с волновым наддувом: 1 – турбокомпрессор; 2 – холодильник наддувочного воздуха; 3 – ресивер; 4 – резонатор; 5 – телескопическое колено волнового трубопровода; 6 – блок цилиндров двигателя


Рис. 6. Схема системы впуска двухблочного дизельного двигателя с волновым наддувом: 1 – турбокомпрессор; 2 – холодильник наддувочного воздуха; 3 – ресивер; 4 – резонатор левого (Л) блока цилиндров; 5 – резонатор правого (П) блока цилиндров; 6 – телескопические колена волновых трубопроводов


Площадь сечения резонансного трубопровода стремятся задать такой, чтобы при допустимой длине трубопровода (с точки зрения габаритных размеров) он обеспечивал приемлемые гидравлические потери. Наиболее существенное влияние на настройку волновой системы оказывают объем резонатора и длина резонансного трубопровода. При этом в зависимости от частоты настройки чувствительность системы на изменение длины резонансного трубопровода в 1,52,0 раза выше, чем на изменение объема резонатора. По этой причине целесообразно выполнить резонатор в виде части штатного впускного коллектора.

Однако в реальных эксплуатационных условиях реализовать такие постоянно регулируемые впускные системы для автомобильных двигателей достаточно трудно не только с точки зрения затрат, но и сложности исполнительного механизма, а также его срока службы. Поэтому на практике реализуются более простые системы с перепуском части наддувочного воздуха на вход турбины, а также двухступенчатые впускные трубопроводы с различной длиной или, соответственно, с неодинаковыми поперечными сечениями. Какую из этих форм впускного трубопровода выбрать – зависит не только от конструкции соответствующего двигателя, но и от количества его цилиндров. Количество цилиндров играет здесь важную роль, так как оно определяет форму волны и силу пульсаций во впускной системе.