Рассмотрим пример: аэростат поднимается на высоту 1 км и зависает. Скорости нет, значит, кинетическая энергия равна нулю. Но если с аэростата сбросить груз, например, использованный баллон из-под газа, то при падении на землю баллон может произвести разрушения, например, сломать куст. Легко понять, что баллон упал, потому что на него действовало притяжение Земли. Значит, баллон имел запас гравитационной энергии, которая зависит от высоты. По определению, эта энергия является потенциальной. Откуда она взялась? За счет подъема аэростата. Вспомним, что количество энергии, равное 1 Дж, передается телу весом 1 Н, если его поднять на высоту 1 м. Очевидно, если тело с весом P поднять на высоту h, то ему будет передано количество энергии Ep = P h (2.2).
Другой пример: когда автомобиль движется по ровной дороге, его высоту над землей можно считать равной нулю. Значит, его потенциальная энергия равна нулю. Это справедливо, так как автомобилю некуда падать. Зато автомобиль имеет скорость. Значит, автомобиль имеет кинетическую энергию. Попробуем найти для нее формулу. Принято считать, что кинетическая энергия всегда положительна. Это справедливо, так как тело может иметь кинетическую энергию и в отсутствие поля, которое указывает на знак взаимодействия. С другой стороны, сама скорость может быть отрицательна, если тело перемещается против поля. Значит, кинетическая энергия зависит не просто от скорости, а от квадрата скорости, так как квадрат любой величины всегда больше нуля. Также она зависит от массы тела: чем больше масса, тем больше энергия. Но если мы напишем просто Ek = mv2 (как для внутренней энергии Е0), то это будет завышенный результат, как если бы энергия была передана мгновенно. Но так не бывает. Известно, что автомобиль набирает скорость постепенно, за некоторое время. Пока нас не интересует это время, но мы знаем, что в начальный момент энергия была равна нулю, а в конце: mv2. Значит, средняя энергия будет равна среднему арифметическому от значений энергии в начале и конце: Ek = (0 + mv2)/2 = mv2 /2