Читать бесплатно книгу «Советская микробиология: на страже здоровья народа. История советской микробиологической науки в биографиях некоторых её представителей» Игоря Юрьевича Додонова полностью онлайн — MyBook









Аспергилловые грибки имеют более сложное строение – мицелий этих грибков многоклеточный: он разделён межклеточными перегородками. Размножаются аспергилловые грибки также посредством спор (экзоспор или конидий).

Аспергилловые грибки разделяются на два подсемейства: собственно аспергиллусы и пенициллиумы. Спороносные нити первых (конидиеносцы) одноклеточные и заканчиваются головчатым утолщением, на котором имеются стеблеобразные выросты – стеригмы. От них и отшнуровываются экзоспоры (органы плодоношения напоминают лейку, поэтому такие грибки ещё называют леечными). Конидиеносцы вторых – многоклеточные, без головчатого утолщения. Стеригмы и отшнуровывающиеся от них экзоспоры напоминают кисточки (отсюда и второе название пенициллиумов – кистевики).

Аспергилловые плесени читатель может видеть весьма часто: на несвежих продуктах, влажных и сырых поверхностях (при недостаточном поступлении света и свежего воздуха).

Грибки семейства аспергилловых имеют большое практическое применение в медицине (в производстве антибиотиков), в особенности грибки рода пенициллиумов.

2) Дрожжи. Дрожжевые грибки – это крупные круглые, овальные, а иногда удлинённые клетки с двуконтурной оболочкой. В них отчётливо заметно ядро, иногда вакуоли (небольшие шаровидные полости). Диаметр дрожжей 7 – 10 микрон. Размножаются они как посредством почкования, так и с помощью спор (эндоспор, образующихся прямо внутри дрожжевых клеток).

Семейство дрожжевых грибков очень многочисленно. Характерной физиологической особенностью большинства дрожжей является способность производить спиртовое брожение сахаров, в результате которого происходит разложение сахара на этиловый спирт и углекислый газ. Эта особенность дрожжей ста стала известна человеку с глубокой древности и нашла широкое применение: при производстве спиртных напитков (пива, вина), для подъёма и разрыхления теста (посредством выделяющегося при брожении углекислого газа), при изготовлении заквасок, использующихся в производстве кисломолочных продуктов (кефира, ряженки, кумыса и др.). С развитием биологической и химической наук стало известно, что многие дрожжевые грибки богаты белками, жирами и витаминами. В связи с этим было налажено дрожжевание кормов для скота. Богатство дрожжей витаминами (тиамином, рибофлавином, никотиновой, фолиевой, пантотеновой кислотами и др.) обусловило их применение при изготовлении лекарств для лечения различных заболеваний (авитаминоза, фурункулёза, диспепсии и ряда других).

В общем, наверное, без преувеличения дрожжевые грибки можно назвать «чемпионом» среди микроорганизмов по сферам их полезного использования в жизни человека.

3) Несовершенные грибки. К этой группе грибков относятся: а) дерматофиты; б) дрожжеподобные организмы и в) лучистые грибки (или актиномицеты).

Вегетативное тело дерматофитов состоит из септированного мицелия. Размножаются они почкованием и экзоспорами.

Дрожжеподобные грибки (Саndida) морфологически сходны с истинными дрожжами, но, в отличие от последних, не образуют эндоспор, т.е. размножаются только почкованием.

Лучистые грибки (актиномицеты) по строению мицелия близки, с одной стороны, к низшим одноклеточным плесеням (мукоровым грибкам), а с другой – к бактериям. Ветвящийся мицелий их представляет собой одну клетку. Нити актиномицетов в поперечнике имеют 1 микрон. Размножаются актиномицеты при помощи оидий –члеников, образующихся в результате распада концевых нитей на отдельные сегменты. В результате эти грибки выглядят, как расходящиеся в разные стороны лучи (отсюда и их название – лучистые грибки). Актиномицеты, подобно плесеням, нашли применение в медицине для изготовления антибиотиков (из различных актиномицетов получены такие антибиотики как стрептомицин, ауреомицин, хлормицетин (его синтетический аналог – левомицетин), тетрациклин).

Мы много сказали о полезной роли грибковых микроорганизмов в жизни человека. Но грибки являются также и причиной многих заболеваний человека (эти заболевания имеют обобщённое наименование микозов). Так, плесневые грибки могут вызывать глубокие микозы – поражение лёгких, селезёнки; дерматофиты поражают кожу и волосы (дерматомикозы); грибки рода Саndida вызывают кандидамикозы мочеполовых путей; лучистые грибки – актиномикозы (очень тяжёлые заболевания, характеризующиеся глубокими нагноениями на шее, затылке, рёбрах и позвонках больного, а также в ряде случаев и поражением внутренних органов – лёгких, печени, кишечника и др., могущие привести к смертельному исходу).

Спирохеты имеют строение тонких нитей со многими завитками.

Тело спирохет состоит из цитоплазмы и центральной эластичной осевой нити. Некоторые виды спирохет имеют длинные тонкие жгутики, располагающиеся по концам тела, другие жгутиков не имеют. Тем не менее подвижными являются все спирохеты. Дело в том, что их подвижность обусловливается сократимостью их цитоплазмы и эластичностью осевой нити. Таким образом, спирохеты могут совершать вращательные и сгибательные движения. Жгутики же, в случае их наличия, играют в передвижениях этих микроорганизмов вспомогательную роль.

Размножаются спирохеты так же, как и бактерии, путём простого поперечного деления.

Эти микробы являются возбудителями ряда инфекционных заболеваний человека. Например, бледная спирохета – возбудитель сифилиса; спирохетами вызываются также возвратный тиф (как вшивый, так и клещевой) и лептоспирозы.

Простейшие (Protozoa) представляют собой одноклеточные животные организмы. По строению они более сложны, чем бактерии. Тело их состоит из протоплазмы, одного или нескольких ядер, вакуоли и ряда включений.

Движение простейшие совершают при помощи протоплазмы, образующей псевдоподии (например, амёбы), либо при помощи жгутиков и ресничек (например, инфузории).

Размножаются простейшие несколькими способами: а) путём простого деления; б) множественным делением сначала ядра, а затем всей клетки на ряд молодых особей (такое деление называется шизогонией); в) половым путём. У некоторых простейших может встречаться сочетание указанных способов размножения. Так, например, у плазмодия малярии происходят смены бесполового и полового циклов размножения.

Некоторые простейшие могут образовывать так называемые цисты (например, дизентерийная амёба). Это – неактивное состояние данных микроорганизмов подобное спорам у бактерий. Как и споры у последних, цисты простейших не служат целям размножения, а являются защитой от неблагоприятных условий внешней среды. Они окружены плотной оболочкой и содержат по несколько ядер. Попав в благоприятные условия, цисты превращаются в вегетативные клетки.

Простейшие являются возбудителями ряда опасных инфекционных заболеваний человека: трипаносома – сонной болезни, плазмодии – малярии, амёбы – дизентерии и амёбных нарывов печени и др.

Риккетсии (существует и форма написания этого слова с двумя буквами «т» – «риккеттсии») – своеобразная группа микроорганизмов. Своё название получили по имени американского медика и учёного Х.Т. Риккетса, впервые описавшего возбудителя лихорадки Скалистых гор, который как раз и является риккетсией1. Риккетс погиб при изучении эпидемии сыпного тифа в Мексике. «Сыпняк» также вызывается риккетсиями. Ещё одна причина, по которой микроорганизм был назван в честь американского исследователя.

Риккетсиям свойственен полиморфизм.

Различают четыре морфологических типа риккетсий (по П.Ф. Здродовскому):

1) Тип А, или кокковидные риккетсии, в виде очень мелких овоидов или эллипсоидов диаметром 0,3 – 0,5 микрон.

2) Тип В, или палочковидные риккетсии, в виде нежных коротких палочек диаметром от 1 до 1,5 микрон.

3) Тип С, или бациллярные (длинные палочковидные) риккетсии, в виде удлинённых и обычно изогнутых тонких палочек размером 3 – 4 микрона.

4) Тип D, или нитевидные риккетсии, в виде длинных, нередко гигантских причудливо изогнутых нитей, напоминающих крупные бактерии-спириллы. Их размер 10 – 40 микрон. Встречатся формы и превышающие 40 микрон.

Риккетсии неподвижны.

Эти микроорганизмы вызывают у человека и животных группу заболеваний, имеющих общее название риккетсиозов. У человека наиболее известным из таких заболеваний, носящим эпидемический характер, является сыпной тиф (причём в трёх «вариациях» – вшивый, крысиный (блошиный) и клещевой). Кроме того, риккетсиозами являются ряд эндемических лихорадок (например, лихорадка цуцугамуши (Япония), марсельская лихорадка, пятнистая лихорадка Скалистых гор Америки и ряд других).

Вирусы. Ряд инфекционных заболеваний человека, животных и растений вызывается такими микроорганизмами, размеры которых исчисляются в миллимикронах (т.е. в тысячных долях микрона и, следовательно, миллионных долях миллиметра). Эти микробы получили название вирусов (от латинского слова «virus» яд). Поскольку они обладают способностью проникать через мелкопористые бактериальные фильтры, задерживающие все другие микроорганизмы, то их стали называть также фильтрующимися вирусами 2.

Вирусы не имеют клеточного строения и характеризуются относительной простотой химического состава, как правило, включающего только гидратированный белок и специфическую нуклеиновую кислоту (РНК или ДНК). Возможно наличие липидной (т.е. жировой) оболочки, которая выполняет защитные функции. Такой оболочкой располагает, например, вирус COVID – 19 (он же – SARS COV.– 2).

Вирусы имеют разнообразную форму: шаровидную, кубовидную, коротких и длинных палочек, иногда изогнутых.

Вирусы настолько малы, что разглядеть их можно, как правило, только в электронный микроскоп. Размеры большинства из них колеблются в пределах от 30 до 100 миллимикрон. Однако есть и более мелкие: величиной 10 – 15 миллимикрон. Размеры таких вирусов приближаются к размерам крупных белковых молекул (таковы, например, вирусы ящура, полиомиелита). В то же время наиболее крупные вирусы, так называемые элементарные тельца, при определённых методах окраски становятся видимыми даже в обычный микроскоп. К элементарным тельцам относятся возбудители оспы, оспы животных и ряда других заболеваний.

* * *

Такова, вкратце, «карта» микроорганизмов. Именно их изучением и, в случае их болезнетворности (для человека, животных и растений), борьбой с ними занимается микробиология.

Однако каким образом микробам удаётся поражать макроорганизмы? Какова схема, факторы их болезнетворной деятельности? И как реагирует на их болезнетворную деятельность макроорганизм (нас в данном случае интересует, прежде всего, организм человека)?

Здесь необходимо рассказать об инфекции как таковой и о человеческом иммунитете.

Под инфекцией (от латинского слова «inficio» заражаю) понимается совокупность явлений, которые происходят в организме вследствие проникновения, размножения и действия в нём микробов.

В инфекционном процессе играет роль взаимодействие трёх факторов: 1) микроорганизма – возбудителя заболевания; 2) макроорганизма; 3) окружающей среды, которая влияет на свойства как макроорганизма, так и микроорганизма.

Микробы, способные вызывать заболевания, должны быть патогенными и вирулентными.

Патогенность – это, собственно, и есть способность микроба оказывать на макроорганизм болезнетворное действие.

Патогенность может значительно колебаться у различных штаммов микробов одного и того же вида. Так вот, степень патогенности данного штамма микроорганизма называется вирулентностью. Т.е. чем выше вирулентность, тем более заразен микроб.

Можно дать и более развёрнутое определение вирулентности.

Вирулентность – это свойство микроба проникать в ткани макроорганизма, жить, размножаться и распространяться в них, противостоять тем неблагоприятным влияниям, которые оказывают на него биологические реакции организма, и выделять различные ядовитые вещества, которые обусловливают клиническую картину инфекционного заболевания.

Чем «ярче» выражены эти «способности» у микроба, тем более он вирулентен (болезнетворен, заразен).

Патогенные микробы приспособлены к жизни только в живых организмах. Данную особенность они приобрели в ходе длительной эволюции, образовавшись из сапрофитных форм. Однако это не значит, что патогенные микроорганизмы тут же погибают во внешней среде. Нет. Более или менее длительное время они способны в ней сохраняться. Но подобная ситуация для них экстремальна. И, только проникнув в живой организм, патогенные микробы «обретают свой рай», максимально благоприятную для их жизнедеятельности среду.

В то же время необходимо учитывать, что строгого деления микробов на патогенные и сапрофиты провести нельзя. Во-первых, многие патогенные микробы, внедрившись в макроорганизм, могут не вызывать в нём инфекционного процесса. Скажем, в человеческом организме способны «спокойно жить» даже носители таких опасных заболеваний как брюшной тиф, холера и туберкулёз (палочка брюшного тифа, холерный вибрион и туберкулёзная микобактерия). Во-вторых, казалось бы, безвредные сапрофиты при понижении сопротивляемости человеческого организма в определённых условиях нередко становятся причиной патологических изменений. Например, «наитипичнейший» сапрофит – кишечная палочка Е. соli, попав в мочевой пузырь или почки, может вызвать воспалительный процесс в них.

Отсюда вполне возможно сделать вывод, что если патогенность является видовым свойством какого-то вида микробов (т.е. такой-то микроб, в принципе, патогенен), то вирулентность – это, можно сказать, индивидуальное свойство микроба (какого-то его штамма, территориальной популяции и т.д.). Также становится ясно, что вирулентность микроорганизмов колеблется как в сторону увеличения, так и в сторону уменьшения. Всякий микроб в момент выделения из макроорганизма максимально вирулентен (оно и понятно, он «пришёл» с «пастбища», из «райского уголка»). Попав во внешнюю среду, подвергаясь высыханию, действию света, иногда – высоких температур, микроб теряет вирулентность.

К факторам вирулентности (см. развёрнутое её определение) относятся: 1) капсулы, 2) диффузионный фактор, 3) токсины, 4) агрессины.

1) Капсулы. Ранее мы говорили, что капсулы и капсулообразование можно рассматривать как приспособляемость патогенных микробов к неблагоприятным условиям жизни в организме человека или животного. Именно в макроорганизме ряд кокков и бацилл образуют капсулы и теряют их, попадая во внешнюю среду, при этом резко ослабляя свою вирулентность. Например, экспериментально доказано, что капсула сибиреязвенной палочки обеспечивает ей устойчивость против фагоцитоза.