Читать книгу «Шахматы. Первое приближение» онлайн полностью📖 — Игоря Александровича Брыгова — MyBook.
image

Игорь Брыгов
Шахматы. Первое приближение

Рецензенты: Глек И. В. международный гроссмейстер по шахматам;

Ляпустин А. Г., кандидат философских наук, старший преподаватель кафедры философии гуманитарных факультетов философского факультета МГУ им. М. В. Ломоносова.

ISBN 978-5-6044536-6-7

«Ужасно интересно все то, что неизвестно; все то, что неизвестно, ужасно интересно»

(Из нашего прошлого – через настоящее – в наше будущее)

«Каждый взрослый происходит из ребенка»

(из непреложных истин)

«В душе каждый взрослый – это ребенок»

(утверждение, требующее доказательства лично)

Коротенькое введение

Здравствуйте, дорогие читатели! Вы держите в руках книгу, которая создавалась очень долго. Насколько? В голове созрел замысел 15 лет назад, когда у меня появились первые ученики. Теперь я преподаю шахматы в одной из лучших школ Москвы, и вы являетесь моим строгим критиком.

«Занятия – почему так называются? – пояснил грифон. – Потому что на занятиях мы у нашего учителя ум занимаем…

А как все займем и ничего ему не оставим, тут же и кончим (образование). В таких случаях говорят: «Ему ума не занимать». Понял?»

(Льюис Кэролл, «Алиса в Стране чудес»)

Говорят: «У шахматистов ума много». И я с большим удовольствием вам его займу!

Понравятся шахматы? И вы будете с ними всегда? Тогда моя книга и старания не зря. Не понравятся? Не думаю! Итак – в путь!

Искренне Ваш, автор

Глава 1. Короли, капуста, ослик и синхрофазотрон

«Сначала мы, как полагается, чихали и пищали. А потом мы принялись за 4 (четыре) действия арифметики:

Скольжение, причитание, умиление и изнеможение»

(Льюис Кэролл «Алиса в Стране чудес»)

Мы с вами живем в век гигантских скоростей, компьютеризации всех или почти всех областей жизни. У каждого из вас имеется электронное устройство, и даже не одно. Вы пользуетесь им, не зная, и не особенно напрягаясь, принципа действия, которого вам не скажут 99 % взрослых.

Парадокс – слишком сложное – перетекает в простейшее, квадратура круга.

В моем классическом школьном восприятии информация изучалась, воспринималась через изучение массы книг, многие из которых были ценными, некоторые, несмотря на большой объем, не очень удачными. Теперь ситуация изменилась: пара кликов, и информация под рукой. Что не поменялось? Систематизация и комбинация фактов.

Компьютер может многое, но он не является творцом. Человек должен быть первым в том, что касается стратегического планирования в любой области. Последнее утверждение начинает казаться спорным, особенно в свете появления нового поколения компьютеров, которому присвоено название – искусственный интеллект. Искусственный интеллект просчитывает миллионы вариантов событий.

Детские ошибки программирования остались в прошлом. Например: советские ученые решили создать суточный рацион питания человека с точки дешевого (в ценах СССР) оптимума. Ввели данные. Ответ обескуражил! Двадцать килограммов свежей капусты. Другой пример программирования – уже человека (французским философом – Буриданом). Он сформулировал «неразрешимую» знаменитую задачу. Стоит ослик, слева от него стоит стог сена, но и справа стоит точно такой же. Подходит время еды. Вопрос: какой стог сена выберет ослик? Ответ философа потрясает: ослик умрет с голоду. Логика такая: ослик очень упрям – стога слева и справа одинаковые – будет выбирать – предпочтения нет – умрет с голоду. При этом не учтен только один фактор: ослик хочет жить.

Существует две ипостаси развития события – логика и обман (блеф). Логика – предмет нашего учебника. А вот пример блефа. Военнослужащий (после физфака) красит на высоте деталь сверхсекретной ракеты, внезапная проверка вооружения высокой инспекцией. Ведерко с краской остается на ракете. Вопрос высокой комиссии, смотрящей на ведро: «Что это?» Ответ: «Новейший синхрофазотрон». К сожалению многих, но факт: блеф проходит только с человеком. Эмоций же у искусственного интеллекта нет. Победить искусственный интеллект можно только глубиной логики. Многие вещи, еще недавно бывшие фантастикой, сегодня, во многом благодаря искусственному интеллекту, стали фактами жизни. И если человек не хочет быть на обочине созидательных событий, ему надо изменять инерцию сознания. Удивительно, но факт: мерой сравнения разумности двух различных искусственных интеллектов является игра – шахматы. Этакий градусник разумности. Почему шахматы, а не какая другая стратегия? Ответ вас удивит: она бесконечна.

Кто автор игры? Откуда она родом? Вопросы остаются в воздухе. Правильный квадрат 8–8. Тридцать две фигуры. И завораживающая бесконечность продолжений игры. Которая до сих пор не просчитана, в которой можно реализовать не разгаданную соперником фантастическую стратегию победы.


Постулаты игры можно формулировать так:

1) победа – любым не противоречащим игре способом;

2) теоретическая бесконечность пребывания фигур на доске;

2.1) при ненахождении конечного и окончательного алгоритма победы

В процессе моего повествования очень важен плотный контроль над всеми входящими нюансами – поэтому буду пунктуальным. Итак, пора познакомиться с доской…

Подглава 1. Доска

Первые данные о шахматах датируются вторым веком нашей эры. Индия, Месопотамия, затем Арабский Восток, затем, по известным источникам, через арабские завоевания Сицилия, Испания. Далее военный характер игры понравился европейцам, и через обязательное обучение в дворянской среде шахматы стали известны всей Европе. К нам в Россию (Русь) первые шахматы попали, скорее всего, по известному торговому пути из Скандинавии (из варяг) в Персию (в греки), по крайней мере, новгородские раскопки датируют шахматы восьмым веком нашей эры. С той поры шахматы практически не изменились. Единственное крупное изменение коснулось королевы или ферзя (королевский указ Изабеллы испанской). И всегда была шахматная доска.

Диаграмма 1


Геометрия шахматной доски парадоксальна. Осуществляются принципы не евклидовой геометрии.

В средней школе изучается так называемая евклидовая геометрия. Одна из основных аксиом (утверждений, не подлежащих ревизии, пересмотру) которой, следующая: кратчайшим расстоянием между двумя точками – является одна прямая линия. На шахматной доске таких прямых может быть несколько (от одной до 357 – движение от поля е1 до поля е8). Движение фигур может и осуществляется как по традиционным прямым, так и по ломаным линиям. Общее расстояние при этом не меняется.


Диаграмма 2


Эта позиция на доске возникла на доске после ходов:

1) d3 d6; 2)e3 e6; 3) b3 b6; 4) g3 g6; 5) c3 c6; 4) f3 f6; 5) c4 c5; 6) f4 f5; 7) Kc3 Kc6; 8) Kf3 Kf6; 9); Лb1 Лb8; 10) Лg1 Лg8.

Она носит название «табия “Альмуджаннах”». Мы видим магический квадрат, где сумма чисел каждой строки каждого столбца, а также двух главных диагоналей равна 260. Этот же рисунок, только без фигур, будет предметом дальнейшей работы. Итак.

Что видимо – принцип построения квадрата есть, и его построение таково: в углах доски правый нижний и левый верхний – соответственно, начало и конец нумерации полей цифры 1 и 64 = 65, левый нижний и правый верхний 8 и 57 = 65. Записывая углы, соседние цифры записываем по ходу ряда, соответственно, 63, 58, 2, 7. Верхний ряд – промежуток между углами 3, 4, 5, 6. Нижний ряд – промежуток между углами 59, 60, 61, 62. Второй нижний ряд – к первому ряду прибавляем или отнимаем 8 (только без отрицательных значений и суммы цифр больше 65). Седьмой ряд – отнимаем или прибавляем цифру 8 (только без отрицательных значений и сумму цифр больше 65). Внутренние четыре ряда заполняем, отталкиваясь от поля h7–49, h3–48, g3–47, a3–41, b3–42, и поднимаясь выше – (минус) 8. Внутренний квадрат 4 на 4 с поля f3–19 по строчке 20, 21, 22 и +(плюс) 8 на каждое поле вверх. Вывод: поля равнозначные следующие (по парам):

h1 – a8, g1 – b8, a1 – h8, b1 – g8, c8 – f1, d8 – e1, e8 – d1, f8 – c1, h2 – a7, g2 – b7, f2 – c7, e2 – d7, d2 – e7, c2 – f7, b2 – g7, a2 – h7, h3 – a6, b6 – g3, c6 – f3, c3 – f6, d3 – e6, e3 – d6, b3 – g6, a3 – h6, a4 – h5, b4 – g5, c4 – f5, d4 – e5, e4 – d5, f4 – c5, g4 – b5, h4 – a5.

Вывод: если фигура (пешка) находится на равнозначном поле, проиграть оппоненту она не должна.

Задания и вопросы для закрепления пройденного на уроке материала:

1. Какому полю соответствует поле с4?

2. Какому полю соответствует поле f5?

3. Какому полю соответствует поле h6?

4. Какому полю соответствует поле е4?

5. На доске стоят две одинаковые фигуры. Белый король на поле g2 и черный король на поле b7. Конгруэнтна ли (одинаково расположена) эта пара фигур? Найдите другое (симметричное поле) для черного короля.

6. Король белых стоит на поле e3. Где должен стоять король черных, чтобы не проиграть партию (сделать ничью)? Найдите еще один вариант решения шестого вопроса.

7. На доске находятся 6 пешек: белые – h2, g2, f2; черные – a7, b7, c7. Они никогда не встретятся и не пересекутся в качестве пешек. Первый ход одной из белых пешек. Как вы считаете, кто победит?

8. Расстояние от поля e1 до поля e8–7 полей (8–1 =7). Придумайте ломаную линию, длина которой будет равна 7 полям, или несколько таких линий.

Глава 2. Доска и бесконечность событий, теория возникновения жизни

В первой главе мы познакомились с волшебным квадратом: пары соответствия полей мы должны выучить наизусть, они нам всегда пригодятся. Есть теории, что шахматы (точнее, доска, произошли от древнейших математических таблиц, связанных с вычислениями. Реальные свидетельства у нас имеются: шахматная доска или ее полный аналог (большее число полей) использовалась в древности в строительстве египетских пирамид, а южноамериканские пирамиды выглядят с космоса как точная калька шахматной доски. В другой ипостаси: военный симулякр (создание плана (-ов) реальных военных сражений) – это Индия. Игра (шахматы) – называлась чатуранга, в дословном переводе «сражение четырех родов войск» (пехота, конница, боевые слоны, осадные (боевые) башни). Учитывая реальную эффективность использования чатуранги как боевого тренажера, игра стала расти главным образом через персидские, позже арабские, завоевания. Самоназвание игра получила в Персии (версий несколько), в дословном переводе: король (шах) умер (мат), буква «ы» – русский довесок. Одному из царей игра так понравилась, что он решил наградить человека (версий рассказа несколько), который его с ней познакомил. Награду предложено было выбрать награждаемому. Тот скромно попросил засыпать доску пшеницей в размере 2 в 64-й степени (первый известный пример упоминания геометрической прогрессии). Почему скромно? Чтобы вырастить такое количество пшеницы, ее надо сажать, выращивать, собирать (и не съесть ни зернышка) на всей планете Земля в течение приблизительно 300 лет. С практической (человеческой) точки зрения – эту величину уже можно принимать за бесконечность, но как бы бесконечен ни был ареал обитания (шахматная доска), он только среда. Для кого? Очевиден ответ: в первую очередь, для подобия (копии) человека.

Составим список понятий.

Дефиниции (определения) будут следующие.

1. Игрок-бог (творец) сотворил. «И вышла на берег, перстами пылая – прекрасная Эа». Александр Сергеевич Пушкин.

2. Эа (Гея) – земля – шахматная доска. И создал Бог землю, и сказал: «Это хорошо». И создал Бог ночь и день (черное и белое).

3. Человек на земле – фигура, именуем его – Адам (доля шутки) – король.

4. Передвижение человека по имени (Адам) Король по земле – один шаг – одно поле.

5. Куда передвигается? В каком направлении? В любом (горизонталь, вертикаль, горизонталь).

Удивительно, но, если посмотреть на все живое, за редким исключением, все виды живых организмов симметричны. Левая половинка = правая половинка. Нам присуще чувство прекрасного – которое оказывается при ближайшем рассмотрении очаровательной симметрией форм и звуков. Классическая музыка – подозрительно похожа на биологическое магнитное излучение здорового живого организма – ауры (в ритмическом волновом сравнении). Строение известного макрокосмоса – увеличенная копия микрокосмоса. И симметрия – всегда минимум пара. И, следуя законам симметрии, – королей всегда два.

Но вот незадача. И боги ошибаются. Короли получились разных знаков + (плюс) и – (минус).

«Мы все – забытые следы чьей-то глубины»

(А. Блок)

6. Так как короля два, и у каждого из них свой ареал обитания, т. е. сфера жизненных интересов, которая рано или поздно соприкасается, тогда и начинается конфликт интересов.

7. Так как ход – это мера экспансии, то поле, на которое король приходит, объявляется полем взятия. Оно может сравниться с полем коня великого завоевателя Аттилы. Изречение Аттилы дошло через века: «На поле, на котором стоит мой конь, не растет даже трава».


На этой странице вы можете прочитать онлайн книгу «Шахматы. Первое приближение», автора Игоря Александровича Брыгова. Данная книга имеет возрастное ограничение 12+, относится к жанрам: «Монографии», «Детская познавательная и развивающая литература». Произведение затрагивает такие темы, как «cистемы имитационного моделирования», «история войн». Книга «Шахматы. Первое приближение» была написана в 2020 и издана в 2022 году. Приятного чтения!