Прежде чем запустить инициативу в области ИИ, компании должны разобраться в том, какие технологии решают какие типы задач, а также понять сильные и слабые стороны каждой из них. Например, основанные на четких правилах экспертные системы и RPA просты и понятны, но не способны к самообучению и улучшению. Глубокое обучение, с другой стороны, отлично подойдет для исследования больших массивов данных, но принципы, по которым оно строит свои модели, почти недоступны человеческому пониманию. Применение таких «черных ящиков» очень проблематично в отраслях с высоким уровнем государственного регулирования, таких как финансовый сектор, в которых регулирующие органы требуют доступа к механизмам принятия решений.
Мы столкнулись с несколькими организациями, которые впустую потратили время и деньги, выбрав технологию, просто подвернувшуюся под руку. Но, если компания хорошо разобралась в этом вопросе, ей будет проще определить, какая из технологий соответствует конкретной потребности, какого поставщика выбрать и как максимально быстро внедрить систему. Чтобы понять технологии, необходимы постоянные исследования и обучение, как правило, в рамках ИТ-отдела или инновационной группы.
В частности, компаниям необходимо привлечь в качестве ключевых сотрудников специалистов по данным, которые обладают навыками в области статистики и обработки больших объемов информации, необходимыми для понимания этих технологий. Основным фактором успеха будет готовность ваших людей учиться. Некоторые обрадуются такой возможности, другие же предпочтут использовать уже имеющиеся инструменты. Старайтесь, чтобы в вашей компании доля первых была выше.
Если у вас нет своего внутреннего научно-аналитического ресурса, вам придется оперативно создать «экосистему» внешних поставщиков услуг ИИ. В дальнейшем, планируя долгосрочные проекты на базе ИИ, не забудьте нанять талантливого специалиста в этой области. В любом случае наличие необходимых ресурсов имеет решающее значение для успеха.
Учитывая дефицит специалистов в области когнитивных технологий, большинству организаций потребуется создать спецотдел – возможно, в одном из центральных подразделений, таких как ИТ или стратегического планирования, – и дать высокоприоритетным проектам компании доступ к его экспертам. По мере роста потребностей и числа специалистов имеет смысл создавать группы, обслуживающие отдельные бизнес-структуры или подразделения, но даже тогда центральная координирующая функция может быть полезна для управления проектами и карьерой.
Следующим шагом запуска программы ИИ является систематическая оценка потребностей и возможностей с последующей разработкой приоритетного портфеля проектов. В исследованных нами организациях для этой цели обычно использовались семинары или короткие консультации. Мы рекомендуем компаниям проводить оценки в трех основных областях.
Первая оценка определяет, какие сферы бизнеса могли бы извлечь наибольшую выгоду от использования когнитивных приложений. Как правило, ими являются те отделы компании, где знания, полученные на основе анализа данных или извлеченные из документов, нужны в первую очередь, но пока недоступны.
● Узкие места. В некоторых случаях нужда в когнитивном прогнозировании вызвана узким местом в потоке информации; знания существуют в компании, но не оптимально распределены. Это часто наблюдается в сфере здравоохранения, например когда знания «пылятся» в клиниках, департаментах или академических медицинских центрах.
● Проблемы масштабирования. В других случаях знания доступны, но процесс их использования занимает слишком много времени или является дорогостоящим для масштабирования. Это характерная ситуация для финансовой сферы. Именно поэтому многие инвестиционные и управляющие компании уже предлагают клиентам «робоконсультирование» на основе ИИ, которое представляет собой экономически эффективное руководство по рутинным финансовым вопросам.
В фармацевтической промышленности Pfizer решает проблему масштабирования, используя IBM Watson для ускорения кропотливого процесса иммуно-онкологических исследований в рамках нового подхода к лечению рака, который задействует иммунную систему самого организма. Цикл разработки иммуно-онкологических препаратов может занимать до 12 лет, прежде чем они выйдут на рынок. Комбинируя сведения из научной литературы с собственными данными, такими как лабораторные отчеты, Watson помогает исследователям выявлять взаимосвязи и находить скрытые закономерности, которые должны быстрее «научить» новое лекарство распознавать цели, а также ускорить комбинирование терапии с обучением и подбор пациентов для этого нового класса препаратов.
● Ненадлежащая мощность. Наконец, организация может собрать данных больше, чем возможно обработать с помощью людей или компьютеров. Например, компания может располагать огромными объемами данных о цифровом поведении потребителей, но не может понять, что они означают и как применить эту информацию в стратегическом планировании. Для решения подобных проблем используется машинное обучение, ориентированное на такие группы задач, как таргетированная покупка цифровой рекламы или, в случае Cisco Systems и IBM, на создание десятков тысяч моделей потребительского поведения, чтобы определить, какие клиенты с какой вероятностью предпочтут те или иные товары.
Вторая оценка касается вариантов использования когнитивных приложений, которые принесут максимальную пользу и поспособствуют успехам в бизнесе. Начните с постановки ключевых вопросов, таких как: насколько важно для вашей общей стратегии решение конкретной проблемы? Насколько сложно в реализации предложенное решение на основе ИИ – как в техническом, так и в организационном плане? Окупят ли выгоды от запуска приложения затраты на его разработку и внедрение? Ответив на эти вопросы, установите приоритетность вариантов использования в соответствии с временным горизонтом каждого из них и учитывая возможность будущей интеграции в более широкую платформу или набор когнитивных инструментов для создания конкурентного преимущества.
Третья тема для проведения оценки – действительно ли инструменты ИИ, рассматриваемые для каждого варианта использования, соответствуют поставленной задаче. Например, чат-боты и интеллектуальные программы могут оказаться неподходящими, поскольку большинство из них пока умеют решать наиболее простые сценарии человеческих запросов (хотя и быстро развиваются). Другие технологии, такие как RPA, предназначенные для ускорения простых процессов вроде выставления счетов, могут на деле замедлять работу более сложных производственных систем. Или еще пример: системы визуального распознавания с глубоким обучением действительно распознают изображения на фотографиях и видео, но требуют большого количества маркеров и могут не справиться со сложным визуальным рядом. В будущем когнитивные технологии трансформируют бизнес-процессы, но сейчас разумнее предпринимать постепенные шаги с использованием доступных инструментов и планируя не столь отдаленные изменения. Когда-нибудь вы, возможно, решите передать взаимодействие с клиентами ботам, но сейчас, в качестве первого шага, более осуществимым и целесообразным будет автоматизация внутренней службы технической поддержки.
Поскольку разрыв между реальными возможностями ИИ и желаемыми не всегда очевиден, компании должны создавать пилотные проекты для когнитивных приложений, прежде чем внедрять их на всем предприятии.
Пробные пилотные решения особенно подходят для инициатив, которые имеют высокую потенциальную ценность для бизнеса или позволяют организации одновременно тестировать различные технологии. Постарайтесь избежать внедрения проектов теми руководителями, которые оказались под влиянием поставщиков технологий. Они всегда будут оказывать давление на руководителей и советы директоров, побуждая их сделать «что-нибудь когнитивное», но это не повод сделать это без «пилота». Проекты, внедренные таким образом, часто терпят неудачу, что, в свою очередь, может ограничивать всю ИИ-программу организации.
Если ваша фирма планирует запустить несколько пилотов, подумайте о создании когнитивного центра передового опыта или аналогичной структуры для управления ими. Такой подход помогает развить необходимые технологические навыки и компетенции в организации, а также упрощает перенос небольших пилотных проектов на производство, что окажет значительное влияние на процессы. Pfizer имеет более 60 проектов, которые используют те или иные формы когнитивных технологий; большинство из них на стадии пилота, но есть уже и внедренные.
В Becton Dickinson служба глобальной автоматизации в рамках ИТ-отдела наблюдает за несколькими когнитивными пилотными проектами на базе средств искусственного интеллекта и RPA (в партнерстве с Global Shared Services). Эта служба использует комплексные карты процессов для руководства внедрением и определения возможностей автоматизации. Кроме того, она использует графические «тепловые карты», которые показывают активности в организации, наиболее поддающиеся вмешательству ИИ. Компания успешно внедрила интеллектуальные средства в процессы ИТ-поддержки, но пока не готова внедрять их в крупномасштабные корпоративные процессы, такие как «заказ – оплата». Страховая компания Anthem разработала аналогичную централизованную ИИ-службу, которую называет Отделом когнитивных компетенций.
По мере разработки когнитивных проектов подумайте над тем, как можно изменить дизайн рабочих процессов, уделяя особое внимание разделению труда между людьми и ИИ. В некоторых подобных проектах 80 % решений станут приниматься машинами, а 20 % – людьми; другие будут иметь обратное соотношение. Систематический пересмотр рабочих процессов необходим для того, чтобы люди и машины дополняли сильные стороны друг друга и компенсировали недостатки.
Например, инвестиционная компания Vanguard запустила новое предложение «Персональные консультативные услуги» (PAS), которое сочетает автоматизированные рекомендации по инвестициям и работу живых консультантов. В этой системе когнитивные технологии применяются для выполнения многих традиционных задач инвестиционного консультирования, включая создание индивидуального портфеля, изменение его баланса с течением времени, сбор налоговых выплат и выбор инвестиций с благоприятным налоговым статусом.
Инвестиционная компания Vanguard использует когнитивную технологию для консультации клиентов по более низкой цене. Система персональных советников автоматизирует многие традиционные задачи инвестиционных консультантов, в то время как они сами занимаются более ценной деятельностью. Вот как Vanguard перестроил свои рабочие процессы, чтобы получить максимум от новой системы.
Благодаря этому консультанты Vanguard выступают в роли «тренеров по инвестициям», которые отвечают на вопросы инвесторов, поддерживают их активную финансовую деятельность и, по словам Vanguard, служат «эмоциональной крепостью» для инвесторов, переживающих за свои инвестиционные планы. Консультантам рекомендуется изучать поведенческие финансы, чтобы эффективно исполнять эти роли. Технология PAS быстро собрала более $80 млрд в управление активами, причем затраты оказались ниже, чем при консультировании сотрудниками, а удовлетворенность клиентов выше. (Подробнее см. врезку «Разделение труда в рамках одной компании».)
Vanguard понимала важность реформирования рабочих процессов при внедрении PAS, но многие другие компании идут напролом, просто автоматизируя уже существующие процессы, особенно при использовании технологии RPA. Эти компании быстрее реализовывают проекты и достигают окупаемости инвестиций, но они лишают себя преимущества в полной мере использовать возможности ИИ и существенно улучшить процесс. Усилия по перепроектированию рабочих процессов могут быть обогащены принципами дизайн-мышления: пониманием потребностей клиента или конечного пользователя, вовлечением сотрудников, чья работа будет реорганизована, рассмотрением планов как экспериментальных «черновиков», обсуждением множества альтернатив и обязательным учетом возможностей когнитивных технологий. Большинство когнитивных проектов хорошо вписываются в итеративное, динамичное развитие.
Многие компании успешно запустили когнитивные пилоты, но не смогли достичь большего, развернув их в масштабах всей организации. Для достижения своих целей компаниям нужны подробные планы масштабирования, что требует сотрудничества между технологическими экспертами и ответственными за автоматизируемый бизнес-процесс лицами. Поскольку когнитивные технологии обычно поддерживают отдельные функции, а не весь процесс целиком, масштабирование почти всегда требует интеграции с существующими системами. Действительно, в нашем опросе руководители сообщили, что такая интеграция была самой большой проблемой, с которой они столкнулись в ИИ-проектах.
Компании должны начать процесс масштабирования с выяснения того, является ли необходимая интеграция возможной в принципе и выполнимой технически. Например, если приложение зависит от специальной технологии, которую сложно получить, это ограничит масштабирование. Убедитесь, что те, кто отвечает за бизнес-процессы, обсуждают вопросы масштабирования с ИТ-отделом до начала или во время пилотного этапа. Конечный запуск в обход айтишников вряд ли будет способствовать успеху, даже в случае относительно простых технологий, таких как RPA.
Например, медицинская страховая компания Anthem разрабатывает когнитивные технологии в рамках серьезной модернизации существующих систем. Вместо того чтобы встраивать новые когнитивные приложения в устаревшую технологию, Anthem использует целостный подход, максимизирующий ценность, производимую когнитивными приложениями, снижающий общую стоимость разработки и интеграции и создающий эффект ореола в устаревших системах. Компания также реорганизует процессы, чтобы, по словам ИТ-директора Тома Миллера, «использовать когнитивные функции, которые выведут нас на новый уровень».
О проекте
О подписке