Читать книгу «Влияние электромагнитного излучения мобильных телефонов на состояние репродуктивной системы и потомство» онлайн полностью📖 — Г. В. Верещако — MyBook.


Таблица 1.2. Основные области применения источников ЭМИ в соответствии с выделенными для этих целей диапазонами частот (длинами волн) [2]


Установлено, что в формировании ЭМП наблюдается определенная зональность. Вокруг источника электромагнитного излучения выделяют три зоны: ближнюю, или зону индукции, промежуточную, или зону интерференции, и дальнюю, или волновую зону (зону излучения).

При излучении от источников ближняя зона простирается на расстояние λ/2π, т. е. приблизительно на 1/6 длины волны. Дальняя зона начинается с расстояний, равных λ×2π, т. е. с расстояний, равных приблизительно шести длинам волны. Между этими двумя зонами располагается промежуточная зона.

В ближней зоне (зоне индукции) на расстоянии r < λ ЭМП с удалением от источника убывает по закону обратно пропорционально r–2 или r–3. В ближней зоне, в которой еще не сформировалась бегущая электромагнитная волна, электрическое (Е) и магнитное (Н) поля следует считать независимыми друг от друга, их измерение проводят раздельно, поэтому эту зону можно характеризовать электрической и магнитной составляющими электромагнитного поля. Соотношение между ними в этой зоне может быть самым различным.

Для промежуточной зоны характерно наличие как поля индукции, так и распространяющейся электромагнитной волны.

Дальняя зона (или зона сформировавшейся электромагнитной волны) начинается с расстояния r > 3 λ; там интенсивность поля убывает обратно пропорционально расстоянию до источника r–1 и связь, существующая между электрической (Е) и магнитной (Н) составляющими, выражается в соответствии с формулой

Е = 377 Н,

где 377 – волновое сопротивление вакуума (Ом).

В волновой зоне воздействие ЭМП определяется плотностью потока энергии (ППЭ), переносимой электромагнитной волной. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны. ППЭ обозначается как S, единицы измерения – ватт на квадратный метр (Вт/м2), милливатт на квадратный сантиметр (мВт/см2) или микроватт на квадратный сантиметр (мкВт/см2).

Установлено, что ЭМП способно взаимодействовать с живыми организмами. Биологическое действие ЭМП на объекты определяется величиной наведения внутренних полей и электрических токов, отражением, поглощением и их распределением в теле человека и животных. Это зависит от размера, формы, анатомического строения тела, электрических и магнитных свойств тканей, содержания воды в них, ориентации объекта относительно поляризации тела, а также от характеристик ЭМП (частота, интенсивность, модуляция и др.). Биологическое действие ЭМИ также зависит от длины волны (или частоты излучения), режима генерации (непрерывный, импульсный), условий воздействия на организм (постоянное, прерывистое, общее, местное, интенсивность, длительность). Биологическая активность ЭМИ уменьшается с увеличением длины волны (или снижением частоты) излучения, поэтому наиболее активными являются метровые, дециметровые, сантиметровые и миллиметровые диапазоны [34, 35].

При взаимодействии ЭМП с живыми организмами возникают явления отражения, проведения, поглощения и преобразования электромагнитной энергии тканями и жидкостями. С увеличением частоты колебаний величина отражения энергии тканями уменьшается, а поглощение увеличивается. Однако биологический эффект обусловливается не только величиной поглощения, но и глубиной проникновения энергии. Чем больше она, тем больше вероятность поражения жизненно важных органов. Волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового – кожей и прилегающими к ней тканями, дециметровые проникают на глубину 8–10 см. В среднем глубина проникновения равняется 1/10 длины волны [2, 32, 35].

Поглощение энергии ЭМИ в тканях существенно зависит от содержания воды. Ткани с высоким содержанием воды (кровь, мышцы, сердце, почки, мозг, семенники) обладают значительно большим коэффициентом экранирования, так как лучше поглощают энергию ЭМП. Ткани с низким содержанием воды – костная и жировая ткань [36]. Глубина проникновения для ЭМИ различных частот в некоторых биологических тканях с низким и высоким содержанием воды в диапазоне частот от 300 до 3000 МГц представлена в табл. 1.3.

Глубина проникновения ЭМИ в ткани находится в прямой зависимости от длины волны, а величина поглощения – в обратной. Воздействие излучений миллиметрового (от 30 до 300 ГГц) и сантиметрового (от 3 до 30 ГГц) вызывает в основном термические ожоги, а излучения дециметрового (от 0,3 до 3 ГГц), проникают глубже, поражая внутренние органы. В табл. 1.4 представлены данные о глубине проникновения ЭМИ в тканях человека в диапазоне 100–3000 МГц.

Исследования биологического действия антропогенных источников ЭМП в широком диапазоне частот указывают на высокую чувствительность различных систем организма к их воздействию.


Таблица 1.3. Глубина проникновения электромагнитных волн в биологических тканях с низким и высоким содержанием воды [2]


Таблица 1.4. Глубина проникновения ЭМИ в тканях человека, см [32]


Несмотря на существование различных точек зрения, наиболее распространенными являются представления о тепловой природе воздействий на живые организмы любых неионизирующих ЭМИ [37]. Поэтому сообщения о влиянии на исследуемую систему воздействий, энергия которых оказывается меньше средней тепловой энергии, т. е при hf << kT (h – постоянная Планка, f – частота излучения, k – постоянная Больцмана, T – абсолютная температура), представляются априори ложными. Тем не менее еще в 80-е годы ХХ в. было показано, что принципиальных теоретических запретов для такого влияния нет. При весьма низком уровне (нетепловом) ЭМП принято говорить об информационном характере воздействия на организм (к примеру, для радиочастот выше 300 МГц интенсивность такого излучения должна быть менее 1 мВт/см2) [38]. Предполагается, что для биологических систем воздействие таких полей лежит ниже порога включения защитных биологических механизмов и способно накапливаться на субклеточном уровне, т. е. на уровне генетических процессов. Полагают также, что такие системы могут находиться в состоянии весьма далеком от равновесия и достаточно слабого (информационного) воздействия, чтобы система прошла через точку бифуркации в качественно новое состояние. Информационное воздействие приводит к формированию биологического эффекта за счет энергии самого организма, т. е. при этом передается информация, необходимая для развития той или иной реакции организма. Особенно интенсивно развиваются исследования нетепловых биологических эффектов в дециметровом – миллиметровом диапазоне длин волн. Результаты биологических исследований свидетельствуют о том, что, несмотря на чрезвычайно малые значения мощности, их излучение оказывает существенное влияние на организм. Показано, что возможные механизмы взаимодействия могут быть связаны с возбуждением элементов жидкокристаллической структуры воды и наличием у живых организмов информационно-волновой составляющей неэлектромагнитной природы [32, 39–43]. Высокая действенность слабых ЭМИ, возможно, объясняется резонансным характером их воздействия, которое способно как усиливать, так и ослаблять функциональные возможности отдельных органов [32, 44, 45].

Тепловое действие ЭМИ наблюдается при высоких интенсивностях излучения – при ППЭ порядка 10 мВт/см2 и выше.

При слаботепловом действии ЭМИ в интервале ППЭ от 1 до 10 мВт/см2 нагревания всего облучаемого объекта не происходит, однако возможны единичные или множественные локальные повышения температуры в отдельных его частях или точках – «горячие пятна». В этом случае говорят о «микротепловом действии». Нетепловое действие наблюдается при ППЭ менее 1 мВт/см2, когда облучение не вызывает повышения температуры в биологическом объекте, однако эффекты в нем выявляются [2].

Поглощение электромагнитной энергии живыми тканями сопровождается повышением их температуры, если поглощаемая мощность превосходит мощность рассеяния тепловой энергии. Последняя определяется теплоотдачей, которая осуществляется с поверхности тела посредством излучения, конвекции, теплопроводности и испарения влаги. Отведение тепловой энергии от глубоких тканей к поверхности тела обеспечивается кровообращением. Механизмы теплоотдачи функционируют в организме непрерывно, поскольку ему свойствен постоянный высокий уровень производства теплоты в ходе обмена веществ. Нарушение теплового гомеостаза в организме в результате облучения ЭМИ наступает в тех случаях, когда возникшая в результате этого дополнительная тепловая нагрузка, по меньшей мере, вдвое превышает уровень основного обмена [2].

Легко подвержены тепловому действию ЭМП паренхиматозные органы (печень, поджелудочная железа), полые органы, содержащие жидкости (мочевой пузырь, желчный пузырь, желудок). Нагревание указанных органов может обострить хронически протекающие в них воспалительные процессы, провоцировать возникновение язв, кровотечения, прободений. При интенсивном общем облучении повышается температура тела и наступает смерть. Пороговые интенсивности теплового действия электромагнитных волн находятся в пределах 10–15 мВт/см2.

При низком уровне ЭМИ (как, например, при излучении мобильного телефона) характер воздействия носит преимущественно нетепловой – информационный характер. В этом случае величина кванта энергии у ЭМИ слишком низка, чтобы влиять непосредственно на какую-нибудь химическую связь, даже водородную, энергия которой мала по сравнению с другими. Однако и низкоинтенсивное ЭМИ способно вызывать биологические эффекты в различных тканях организма, которые можно характеризовать как сигнальные, регулирующие и дестабилизирующие. Сигнальное действие происходит при величинах ЭМИ, сопоставимых с уровнем естественных источников излучения, и воспринимается организмом как сигнал, несущий определенную информацию. Регулирующее действие наблюдается у биологических объектов различных уровней организации способностью изменять их функциональное состояние. При дестабилизирующем действии ЭМИ низкого уровня может происходить увеличение отклонений некоторых изучаемых показателей в облученном организме по сравнению с интактным контролем [2].

При нетепловом действии (нетепловая концепция) биологическую реакцию вызывает не энергия ЭМИ. В этом типе взаимодействий ответная реакция осуществляется за счет собственных энергетических ресурсов организма, а ЭМИ является только инициирующим сигналом. Нетепловое действие для ЭМИ радиочастотных и микроволновых диапазонов (РЧ- и МКВ-диапазонов) начинается с величины ППЭ ~ 10–12 Вт/м2, которая является минимальным порогом чувствительности для многих биологических объектов. Тепловые взаимодействия для ЭМИ РЧ- и МКВ-диапазонов наблюдаются на всех уровнях биологической организации – от организма до молекул, тогда как нетепловые, несмотря на крайне низкие интенсивности, проявляются преимущественно на уровне целого организма [2].

Функциональные изменения в организме под действием ЭМП могут накапливаться, но являются обратимыми до достижения определенных величин, если это излучение прекращается. Биологические эффекты ЭМП в условиях длительного многолетнего воздействия накапливаются с возможным развитием отдаленных последствий, включая дегенеративные процессы, нарушения регуляторных процессов в нейроэндокринной системе.