Читать книгу «Фракталы городской культуры» онлайн полностью📖 — Е. В. Николаевой — MyBook.

Глава 1
Концепт фрактального города: математическая сущность и гуманитарные смыслы

Понятие фрактала и фрактальности

Математическая концепция фрактальных структур была изложена франко-американским математиком Бенуа Мандельбротом в ряде его статей и монографий 1970-х – 1980-х гг., среди которых – знаменитая «Фрактальная геометрия природы» (B. Mandelbrot, «The Fractal Geometry of Nature», 1982)[23].

Собственно термин «фрактал», предложенный Б. Мандельбротом в середине 1970-х гг. для обозначения нерегулярных геометрических форм, обладающих самоподобием во всех масштабах, образован, как объясняет сам ученый, от латинского причастия «fractus» и в соответствии с семантикой исходного глагола «frangere» имеет значение «фрагментированный», «изломанный» и «неправильный по форме»[24]. Удивительно, но точного непротиворечивого математического определения фракталов не выработано до сих пор. В самом общем виде, за рамками специальных математических дефиниций, фрактал был определен Б. Мандельбротом как «структура, состоящая из частей, которые в некотором смысле подобны целому»[25]. Степень сложности, «изломанности» фрактального объекта определяет его фрактальную размерность, которая чаще всего превышает его топологическую размерность, то есть линия благодаря многочисленным изгибам как бы стремится превратиться в плоскость, а «складчатая» плоскость – в объемную фигуру.

По существу сугубо математический труд Б. Мандельброта, посвященный теоретическим и прикладным проблемам геометрии особого типа, нерегулярным геометрическим и природным объектам – самоподобным структурам и образованиям дробной размерности, послужил катализатором многочисленных исследований фрактальности в самых разных гуманитарных дисциплинах: урбанистике, архитектуре, психологии, искусствознании, философии, социологии, культурной антропологии. С появлением фрактальной геометрии совсем в другом свете предстают философские понятия «складки», «рифлёных» и «гладких» пространств Ж. Делёза и Ф. Гваттари, предвосхитивших, на наш взгляд, идею фрактального описания мира в его онтологической сложности[26]. К концу 2000-х гг. фрактал и фрактальность не только оформились в полноценные научные понятия в гуманитарном дискурсе, но и стали применяться в качестве количественного и качественного критерия футуристических прогнозов[27] и эстетических оценок[28].

Центральной идеей фрактальной концепции является самоподобие как природных феноменов, так и социокультурных явлений, динамика которых раньше считалась хаотической. Самоподобие означает, что в рамках системы некоторые ее участки разного масштаба повторяют конфигурацию системы в целом, т. е. в пределах общей формы заключен (бес)конечно «тиражируемый» фрактальный паттерн.

Иными словами, фрактал – это самоподобная структура: структура, содержащая на разных уровнях (бес)конечное число своих «копий», которые в той или иной степени повторяют характерные особенности системы как целого (узоры, структурные связи, конструкции, образы, идеи и т. п.). Фрактальный паттерн, в том или ином смысле идентичный целому, воспроизводится на каждом последующем уровне меньшего масштаба, образуя своего рода «вложенную» структуру. Подобие не зависит от масштаба рассмотрения фрактальной структуры, т. е. фрактал обладает свойством масштабной инвариантности (скейлинга). Это значит, что переходя на более мелкие, внутренние уровни фрактала, т. е. как бы рассматривая участки фрактальной структуры под микроскопом, мы вновь обнаруживаем все те же (или похожие) физические или ментальные конфигурации, которые были видны у структуры в целом. Таким образом, любой самоподобный фрагмент фрактальной конструкции репрезентирует целое, «разворачивая» из себя весь комплекс значений и форм, присущих собственно фракталу как некой целостности.

Природными фракталами являются береговые линии, горы, русла рек, деревья с их ветвистыми кронами и листьями, снежинки, кровеносная и нервная системы человека и др. Фрактальные свойства демонстрируют социальные и культурные системы, имеющие иерархические уровни: например, страна – город – квартал; народ – социокультурная группа – семья, и т. п. Более того, любой социокультурный объект на каждом из множества самых разных иерархических уровней культуры – от государственного устройства до индивидуальной моды, от планировки города до способа упаковывать подарки и т. д. – символически являет собой самоподобную модель своей культуры. Важно иметь в виду, что подобие не означает абсолютной идентичности, речь идет о некотором принципиальном сходстве, которое может проявляться пространственно или концептуально.

Любой фрактал может быть представлен как визуализация некоторого алгоритма, набора математических процедур, имеющих характер последовательных итераций (многократных повторений заданных операций). Фрактальные итерации – рекурсивны, т. е. каждый результат предыдущего шага служит начальным значением для нового цикла самовоспроизводства фрактальной структуры (узора, конструкции, идеи).

Таким образом, общим для всех фракталов является наличие рекурсивной процедуры их генерации и (бес)конечной цепочки автопоэзиса (самопостроения)[29]. В строгом математическом понимании фрактал бесконечен, поэтому фрактальная структура n-ного порядка называется предфракталом. При этом с помощью относительно несложных математических формул «можно описать форму облака так же чётко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии»[30]. Математические фракталы бесконечны, как и культурные фракталы, относящиеся к культурогенезу и культурной трансмиссии, однако фрактальные артефакты культуры (например, здания, матрешки или образы на рекламных объявлениях) имеют ограниченную «глубину» фрактальности, иногда не более двух итерационных уровней.

Фрактальное самоподобие:

Японская пагода


Дельта реки Лена


Самоподобие и рекурсивность фрактала сделали возможным появление нематематических концепций фрактальности. Фрактал оказался наглядной и операбельной визуализацией идеи бесконечного становления, незавершенности, процессуальности и имманентно «запрограммированной» динамики всех социокультурных феноменов. Фрактал, действительно, «не есть конечная форма (фрактал никто никогда не видел, так же как число π), а есть закон построения этой формы», «ген формообразования»[31], как называет его российский математик и философ А. В. Волошинов. Главным содержанием фрактала как парадигмального концепта является бесконечное развертывание на каждом новом уровне погружения в упорядоченную или «хаотическую» структуру все тех же смыслов, заданных в «начале начал», – при неизменном фундаментальном подобии частей целому.

Еще одно важное качество фракталов – это удивительная красочность и потрясающая зрелищность их визуализаций, демонстрирующих то барочную складчатость, то сложную геометрию хайтека. Многочисленные творческие опыты художников-программистов с фрактальными алгоритмами привели к возникновению в конце XX века целого художественного направления, называемого фрактальной живописью или фрактальным искусством.

Становится очевидным, что фракталы – эти «монстры» и «чудовища», как окрестили их математики на заре XX века, «оказываются в состоянии послужить центральными концептуальными инструментами для нахождения ответов на некоторые с давних пор не дающие человеку покоя вопросы, связанные с формой мира, в котором он живет»[32] и, добавим, который он творит.


Цифровое фрактальное искусство

Типы фракталов в городской культуре

Существует несколько типов фрактального подобия[33]. Все классификации фракталов основаны на способе генерации фрактальных структур и учитывают степень подобия фрактальных частей целому.

Геометрические фракталы (иногда их называют линейными) – самые очевидные, в прямом смысле слова: их самоподобие визуально легко различимо. Таковы, например, треугольник Сер-пинского или снежинка Коха. Геометрические фракталы получают с помощью ломаной линии или двух-, трехмерной фигуры, называемой генератором. За один шаг алгоритма часть исходной линии/фигуры (инициатора) заменяется на линию/фигуру (генератор) в соответствующем масштабе. В результате многократного (в пределе – бесконечного) повторения этой процедуры получается геометрический фрактал.

Наиболее яркие примеры фрактальной архитектуры геометрического типа – индонезийские храмовые комплексы Боробудур и Прамбанан, итальянский замок Castel del Monte, собор св. Петра в Ватикане.

Алгебраические, или нелинейные, фракталы образуются цифровым способом – визуализацией итерационного алгоритма расчета по формуле, содержащей комплексные числа; например, формула множества Жюлиа имеет вид: f(z) = z2 + c, где z и с – комплексные числа.

Архитектурные геометрические фракталы:

Храм Боробудур


Замок Castel del Monte


Конечный результат каждого цикла используется в качестве начального значения для расчета последующего, т. е. процесс повторения процедуры также является рекурсивным. Один из способов визуализации алгебраических фракталов состоит в том, что действительная часть каждого z0 изображается в виде точки в прямоугольной системе координат и окрашивается в определенный цвет в зависимости от номера итерации, на которой значение z может считаться бесконечным. Фрактальное подобие в получившихся визуализациях может быть не столь очевидным, но оно, несомненно, присутствует и выявляется визуально или аналитически.

Примером алгебраического фрактала служит знаменитое множество Мандельброта. Не являясь самоподобным в строгом геометрическом смысле, оно, тем не менее, при увеличении изображения демонстрирует внутри себя бесконечное число собственных крохотных копий.

Визуализация алгебраических фракталов лежит в основе цифровой фрактальной живописи. Такого рода фракталы наблюдаются во многих планах городской застройки Нового времени, в архитектуре «колодца» в дворцово-парковом комплексе Quinta da Regaleira (Синтра, Португалия), башни Aqua (Чикаго, США) и др. Фрактальность нелинейного типа используется в современной так называемой «органической» архитектуре (проекты Ф. Л. Райта, Ф. Гери, Заха Хадид и др.)[34], в прогнозировании поведения финансовых рынков[35] и, вероятно, может служить аналитическим инструментом при моделировании социокультурных процессов.


Нелинейные архитектурные фракталы:


«Колодец масонов» (Синтра, Португалия)


Музей Гуггенхайма (Нью-Йорк)


При этом самоподобие фрактальных паттернов может быть абсолютным (точное рекурсивное воспроизводство паттерна) или относительным (квазиподобие), когда маленькие элементы фрактала при увеличении масштаба рассмотрения не повторяют точно систему в целом, но в общем имеют похожий, хотя и несколько искаженный вид. При внесении в геометрический или алгебраический алгоритм периодических случайных вариаций получаются стохастические фракталы. В таких случаях имеет место приближенное сходство, которое достаточно хорошо ощутимо. Большинство природных фракталов являются стохастическими фракталами. Такие фракталы (например, Броуновское дерево) обладают статистическим подобием. Кроме того, существуют алеаторные фракталы, в которых искажения паттерна существенны и непредсказуемы из-за случайных внешних возмущений[36]. В городской культуре к ним принадлежат большинство городских кварталов, архитектура храма Святого семейства (арх. А. Гауди), музея Гуггенхайма в Бильбао, Центра науки и культуры короля Абдул Азиза в Саудовской Аравии (см. цветную вкладку) и др.


Стохастические фракталы:


Храм Святого Семейства (Барселона, Испания)


Центр науки и культуры короля Абдул Азиза (Саудовская Аравия)


Стохастическая фрактальность присутствует во многих произведениях «традиционных» искусств (литературе, кинематографе, живописи): так, фрактальный анализ даже применяется для определения подлинности живописных абстракций Дж. Поллока[37]. Стохастический характер демонстрируют большинство социокультурных процессов, в т. ч. культурная трансмиссия.

Наконец, особый тип фракталов представляют собой так называемые культурные фракталы, которые используются при анализе социокультурных феноменов и артефактов. Вот как определяет культурный фрактал Пол Даунтон (Paul Downton), австралийский ученый, специалист в области экологии архитектуры и биоурабнистического дизайна: «Культурный фрактал содержит конфигурации всех существенных характеристик его культуры»[38].

Российский математик и социальный философ С. Д. Хайтун предпочитает называть фрактальные структуры, выходящие в своем философском содержании за рамки геометрической фрактальности, непространственными фракталами. Ученый считает, что, в отличие от неорганических систем, демонстрирующих пространственную фрактальность, «для социального мира более характерны непространственные фракталы»[39]. В литературоведении для обозначения фракталов такого рода российско-австралийский филолог Т. Б. Бонч-Осмоловская, анализируя фрактальность художественных текстов, предлагает специальные термины – семантические и нарративные фракталы. Семантические фракталы, по ее мнению, присутствуют там, «где о подобии части бесконечному и вечному целому только рассказывается» и «демонстрирует[ся], что предметы, явления или люди бесконечно повторяются в цепи сходства-подобия»; тогда как самоподобие нарративных фракталов связано «не с умственными схемами, а с существующими или мнимыми визуальными произведениями»[40]. Очевидно, в такой интерпретации оба термина логически неоднозначны и даже противоречивы.

На наш взгляд, фракталы ментального и социокультурного характера более уместно было бы называть концептуальными, поскольку подобие во многих из них выражается не на уровне гомогенных конфигураций и рекурсивных паттернов, тем или иным образом связанных с культурой, а на уровне идей и концептов, общих для некоторой социокультурной, философской и т. п. системы и ее составляющих: символы, социальные и культурные элементы и пр. Ведь, скажем, некоторые фракталы, которые можно обнаружить в социокультурном пространстве и, соответственно, назвать культурными, как, например, элементы архитектурных комплексов, часто оказываются чисто геометрическими. Таким геометрическим фракталом является знаменитый замок Castel del Monte (1250 г.) на юге Италии, имеющий в плане несколько уровней восьмиугольных паттернов. При том, что он, безусловно, представляет собой культурный артефакт, памятник истории и культуры, его фрактальные структуры описываются исключительно в терминах и алгоритмах геометрической фрактальности. И за этими геометрическими фрактальными паттернами не скрывается никакое специфическое культурное (символическое) содержание.

В случае собственно «культурных», точнее, концептуальных фракталов речь не идет о пространственных рекурсиях, которые хотя и относятся к сфере культуры, но являются исключительно геометрическими или алгебраическими (плотность застройки и т. п.). Концептуальные фрактальные паттерны, наблюдаемые на разных уровнях «фрактальной итерации» культурного пространства, обязательно выступают в качестве рекурсивных элементов разнообразных социокультурных практик в контексте всей (локальной или глобальной) культуры, т. е. как часть (мульти) фрактала культуры. Например, геометрические фракталы древних африканских городов, как доказал американский специалист по этноматематике Р. Иглэш (Ron Eglash), связаны принципом подобия с самыми разными артефактами и практиками традиционной культуры Африки. Ученый обнаружил одни и те же самоподобные элементы (фрактальные паттерны) в африканской архитектуре, традиционных прическах, скульптуре, живописи, религии, играх, техниках счета, символических системах, социальных и политических структурах[41].


Концептуальный фрактал «День Победы»


...
5