Читать книгу «Структурная биохимия. Учебное пособие» онлайн полностью📖 — Е. А. Бессолицыной — MyBook.

Структурные полисахариды животных

Хитин – важный структурный полисахарид беспозвоночных. Из него, в частности, построен наружный скелет ракообразных и насекомых. Структуру хитина составляют N N-ацетил-О-глюкозаминовые звенья, соединенные β (1—4) -гликозидными связями.

Гликозаминогликаны (мукополисахариды) У позвоночных входят в состав межклеточного вещества в составе протеогликанов (соединения из углеводов и белков где углевод составляет 90%).

Рисунок 29. Формулы структурных полисахаридов позвоночных. А-гиалуроновая кислота, Б-гепарин, В-хондроэтин-4-сульфат


Гиалуроновая кислота образует очень вязкие, гелеобразные растворы, входит в состав рыхлой и плотной соединительных тканей, а также в состав хряща. состоящий из многократно чередующихся остатков D-глюкуроновой кислоты и N-ацетил-О- глюкозамина, соединенных β (1—3) гликозидной связью. Это линейный редуцирующий гетерополисахарид.


Рисунок 30. Структура протеогликанов


Хондроитин, основной полисахарид протеогликанов хряща, это линейный, редуцирующий гетерополисахарид, содержащий чередующиеся остатки D-глюкуроновой кислоты и сульфатированного N-ацетил-D-галактозамина, соединенные β (1—3) гликозидной связью. В зависимости от сульфатирования, есть 4- или 6-хондроитинсульфат. Также в состав межклеточного вещества соединительной ткани входят кератансульфат и другие полисахариды (Рисунок 30). Существует еще множество полисахаридов, входящих в состав протеогликанов, образующих аморфное вещество соединительных тканей. В зависимости от типа соединительной ткани преобладает тот или иной тип полисахарида в протеогликанах. Все они слабо растворимы, но существует исключение – полисахарид плазмы крови, синтезируемый клетками, выстилающими сосуды. Этот полисахарид – гепарин.

Гепарин – это короткий линейный, редуцирующий гетерополисахарид, растворенный в плазме крови. В состав гепарина входят повторяющиеся единицы из остатков шести сахаров, каждая из которых представляет собой последовательность чередующихся остатков сульфопроизводных N-ацетил – D-глюкозамина и D-идуроната. Гепарин препятствует свертыванию крови, то есть является антикоагулянтом. Его секретируют клетки выстилающие капилляры – эндотелиоциты. Выделенный из легочной ткани гепарин используется в медицине для предотвращения свертывания донорской крови, а также для предупреждения свертывания крови в сосудах при различных патологических состояниях, например, после приступов стенокардии.

Структурные полисахариды, входящие в состав межклеточного вещества, образуют протеогликаны – белково-углеводные комплексы, где белок составляет около 10%. Типичный протеогликан хрящевой ткани содержит около 150 полисахаридных цепей с молекулярной массой 20000 каждая; они (в виде боковых цепей) ковалентно присоединены к «сердцевинным» полипептидам. Такие протеогликаны представляют собой сильно гидратированные структуры, 20000 каждая; они (в виде боковых цепей) ковалентно присоединены к «сердцевинным» полипептидам. Такие протеогликаны представляют собой сильно гидратированные структуры.

Гликопротеиды – это молекулы белка, к которым присоединены короткие полисахаридные молекулы. В отличие от протеогликанов, в гликопротеидах белок составляет 95% молекулы. Кроме того, углеводный компонент короче – несколько десятков мономерных звеньев, очень разнообразен, можно сказать, что каждый белок имеет свой уникальный как по составу, и по форме полисахарид. Полисахариды присоединяются к секретируемым белкам клетки, а также к мембранным белкам, углеводная часть протеидов мембраны обращена во внешнюю среду клетки, формирует гликокаликс.

В данном случае полисахарид выполняет сигнальную функцию, по таким разветвленным гетерополисахаридам клетки распознают друг друга. В частности группы крови А В определяются по полисахаридам располагающимся на поверхности эритроцитов. Здесь можно говорить не только о многообразии полисахаридного компонента каждого белка, но и о вариабельности этой молекулы для одного белка внутри популяции.

Нуклеотиды и нуклеиновые кислоты

Структура нуклеотидов и азотистых оснований

Нуклеотиды принимают участие во множестве биохимических процессов, а также являются мономерами нуклеиновых кислот. Нуклеиновые кислоты обеспечивают все генетические процессы. Каждый нуклеотид состоит из трех типов химических молекул:

• азотистое основание;

• моносахарид;

• 1—3 остатка фосфорной кислоты.

В отличие от моносахаридов, нуклеотиды как мономеры являются сложно устроенными молекулами, состоящими из структур, относящихся к разным классам химических веществ, поэтому необходимо рассмотреть свойства и структуру этих компонентов по отдельности.

Азотистые основания

Азотистые основания относятся к гетероциклическим соединениям. В состав гетероцикла помимо атомов углерода входят атомы азота. Все азотистые основания, входящие в нуклеотиды относят к двум классам азотистых оснований: пуриновые и пиримидиновые. Пуриновые основания это производные пурина – гетероцикла, состоящего из двух циклов, один пятичленный, второй – шести, нумерация осуществляется так, как показано на рисунке. Пиримидиновые основания являются производными пиримидина и состоят из одного шестичленного цикла, нумерация также указана на рисунке (Рисунок 31). Главные пиримидиновые основания и у прокариот, и у эукариот – это цитозин, тимин и урацил. Из пуриновых оснований чаще всего встречаются аденин и гуанин. Два других – ксантин и гипоксантин – являются интермедиатами в процессах их метаболизма. У человека в роли конечного продукта катаболизма пуринов выступает окисленное пуриновое основание – мочевая кислота. Помимо пяти названных выше главных оснований известны и менее широко представленные минорные основания. Некоторые из них присутствуют только в нуклеиновых кислотах бактерий и вирусов, но многие также найдены в составе про- и эукариотических ДНК и транспортных и рибосомных РНК. Так, и бактериальная ДНК, и ДНК человека содержат значительные количества 5-метилцитозина; в бактериофагах обнаружен 5-гидроксиметилцитозин. Необычные основания выявлены в матричной РНК – N6-метиладенин, N6, N6-диметиладенин и N7-Meтилгуанин. У бактерий также обнаружен модифицированный урацил с присоединенной по N3-положению (α-амино, α-карбокси) -пропильной группой. Функции этих замещенных пуринов и пиримидинов до конца не выяснены, однако они могут образовывать неканонические связи между основаниями (это будет рассмотрено ниже), обеспечивая образование вторичных и третичных структур нуклеиновых кислот.


Рисунок 31. Структура азотистых оснований


В клетках растений выявлена серия пуриновых оснований с метильными заместителями. Многие из них фармакологически активны. В качестве примера можно привести кофейные зерна, содержащие кофеин (1,3, 7-триметилксантин), чайный лист, содержащий теофиллин (1, 3-диметил-ксантин), и какао-бобы, в состав которых входит теобромин (3, 7-диметилксантин).

изомерия и Физико-химические свойства пуриновых и пиримидиновых оснований

Молекула азотистого основания образует систему чередующихся одинарных и двойных связей (систему сопряженных двойных связей). Такая организация образует жесткую молекулу, без возможности конформационных переходов. В результате нельзя говорить об изменении конформации азотистых оснований.

Для азотистых оснований выявлен только один тип изомерии кето-енольный переход или таутомерия.

Таутомерия

Благодаря феномену кето-енольной таутомерии нуклеотиды могут существовать либо в лактимной, либо в лактамной формах, причем в физиологических условиях лактамная форма превалирует у гуанина и тимина (Рисунок 32). Важность этого обстоятельства станет ясна при обсуждении процессов спаривания оснований.

Рисунок 32. Таутомерия нуклеотидов


Растворимость

При нейтральном рН наименьшей растворимостью обладает гуанин. Следующим в этом ряду стоит ксантин. Мочевая кислота в форме уратов сравнительно неплохо растворяется при нейтральном рН, но очень плохо растворима в жидкостях с более низкими значениями рН, таких, как моча. Гуанин в моче человека в норме отсутствует, а ксантин и мочевая кислота являются ее обычными компонентами. Последние два пурина часто входят в состав камней мочевого тракта.

Поглощение света

За счет системы сопряженных двойных связей все азотистые основания поглощают в ультрафиолетовой части спектра. Спектр поглощения – график распределения оптической плотности в зависимости от длины волны. Для каждого азотистого основания свой спектр поглощения, по нему можно различить растворы различных азотистых оснований или соединений в состав которых входит азотистое основание (нуклеотиды), но максимум поглощения у всех совпадает при длине волны 260 нм. Это позволяет легко и быстро определять концентрацию как азотистых оснований, так нуклеотидов и нуклеиновых кислот. Спектр поглощения также зависит от рН раствора (Рисунок 33).


Рисунок 33. Спектры поглощения различных азотистых оснований

Функции азотистых оснований

Азотистые основания практически не встречаются в свободном состоянии. Исключение составляют некоторые алкалоиды и мочевая кислота.

Азотистые основания выполняют следующие функции:

Входят в состав нуклеотидов;

Часть алкалоидов – азотистые основания, например, кофеин в кофе или теофелин в чае;

Промежуточные продукты обмена азотистых оснований и нуклеотидов;

Мочевая кислота – причина мочекаменной болезни;

В виде мочевой кислоты выводится азот у некоторых организмов.

Нуклеотиды и нуклеозиды

Молекулы нуклеозидов построены из пуринового или пиримидинового основания, к которому (β-связью присоединен углевод (обычно D-рибоза или 2-дезоксирибоза) в N9 или N1‒положении соответственно. Таким образом, адениновый рибонуклеозид (аденозин) состоит из аденина и D-рибозы, присоединенной в положении N9; гуанозин – из гуанина и D-рибозы в положении N9; цитидин – из цитозина и рибозы в положении N1; уридин – из урацила и рибозы в положении N1. Таким образом в пуриновых нуклеозидах (нуклеотидах) азотистое основание и сахар связаны 1—9 β гликозидной связью, а в пиримидинах – 1—1 β гликозидной связью.

В состав 2́-дезоксирибонуклеозидов входят пуриновые или пиримидиновые основания и 2́-дезоксирибоза, присоединенная по тем же атомам Nи N9. Присоединение рибозы или 2́-дезоксирибозы к кольцевой структуре основания происходит за счет относительно кислотолабильной N-гликозидной связи (Рисунок 34).

Нуклеотиды – это производные нуклеозидов, фосфорилированные по одной или более гидроксильным группам остатка рибозы (или дезоксирибозы). Так, аденозинмонофосфат (AMФ или аденилат) построен из аденина, рибозы и фосфата. 2́-дезоксиаденозинмонофосфат (дAMФ или дезоксиаденилат) представляет собой молекулу, состоящую из аденина, 2́-дезоксирибозы и фосфата. Обычно к урацилу присоединена рибоза, к тимину – 2́-дезоксирибоза. Поэтому тимидиловая кислота (ТМФ) состоит из тимина, 2́-дезоксирибозы и фосфата. Кроме вышеперечисленных форм нуклеотидов обнаружены и нуклеотиды необычной структуры. Так, в молекуле тРНК выявлен нуклеотид, в котором рибоза присоединяется к урацилу в пятом положении, т. е. не азот-углеродной связью, а углерод-углеродной. Продукт этого необычного присоединения назван псевдоуридином (ψ). Молекулы тРНК содержат и другую необычную нуклеотидную структуру – тимин, соединенный с рибозомонофосфатом. Этот нуклеотид образуется уже после синтеза молекулы тРНК путем метилирования остатка УMФ S-аденозилметионином. Псевдоуридиловая кислота (ψМФ) тоже образуется в результате перегруппировки УMФ после синтеза тРНК.


Рисунок 34. Структура пуриновых и пиримидиновых нуклеозидов и нуклеотидов

Номенклатура, физико-химические свойства и функции нуклеозидов и нуклеотидов

Положение фосфатной группы в молекуле нуклеотида указывается цифрой. Например, аденозин с фосфатной группой, присоединенной к 3-му углероду рибозы, должен быть обозначен как 3́-монофосфат. Штрих после цифры ставят для того, чтобы отличить номер углерода в пуриновом или пиримидиновом основании от положения этого атома в остатке дезоксирибозы. При нумерации атомов углерода основания штрих не ставится. Нуклеотид 2́-дезоксиаденозин с фосфатным остатком при углероде-5 молекулы сахара обозначается как 2́-дезоксиаденозин-5́-монофосфат. Нуклеозиды, содержащие аденин, гуанин, цитозин, тимин и урацил, принято обозначать буквами A, Г, Ц, Т и У соответственно. Наличие буквы d (или д) перед сокращением обозначает, что углеводным компонентом нуклеозида является 2́-дезоксирибоза. Гуанозин, содержащий 2́-дезоксирибозу, может быть обозначен дГ (дезоксигуанозин), а соответствующий ему монофосфат с фосфатной группой, присоединенной к третьему атому углерода дезоксирибозы, – дГ-3́-МФ. Как правило, в тех случаях, когда фосфат присоединен к углероду-5 рибозы или дезоксирибозы, символ 5́ опускается. Так, гуанозин 5́-монофосфат принято обозначать ГМФ, а 5́-монофосфат 2́-дезоксигуанозина сокращают как дГМФ. Если к углеводному остатку нуклеозида присоединены 2 или 3 остатка фосфорной кислоты используются аббревиатуры ДФ (дифосфат) и ТФ (трифосфат). Таким образом, аденозин + трифосфат с тремя фосфатными группами в 5́-положении углевода будет обозначаться АТФ. Поскольку в молекулах нуклеотидов фосфаты находятся в виде ангидридов фосфорной кислоты, т. е. в состоянии с низкой энтропией, их называют макроэргами (обладающими большим запасом потенциальной энергии). При гидролизе 1 моля АТФ до AДФ высвобождается 7,3 кКал потенциальной энергии.


Рисунок 35. Структура цАМФ


Физико-химические свойства нуклеотидов

Так как в состав нуклеотидов входят азотистые основания, то такие свойства как таутомерия и способность поглощать в ультрафиолетовой части спектра также характерны и для нуклеотидов, причем спектры поглощения азотистых оснований и содержащих эти основания нуклеотидов сходны. Наличие сахара и остатков фосфорной кислоты делает их более гидрофильными чем азотистые основания. Все нуклеотиды являются кислотами, так как содержат остатки фосфорной кислоты.

Функции природных нуклеотидов

Нуклеотиды являются мономерами нуклеиновых кислот (РНК, ДНК). В состав ДНК входят дезоксирибонуклеотидфосфаты – производные аденина, тимина, гуанина и цитозина. Также некоторые молекулы гуанина и цитозина в составе ДНК метилированы, то есть содержат метильную группу. Как основные мономеры в состав РНК входят рибонуклеотидфосфаты – производные аденина, урацила, гуанина и цитозина. Также в состав РНК входят нуклеотиды, содержащие различные минорные азотистые основания, например ксантин, гипоксантин, дигидроуридин и др.

Нуклеотиды являются мономерами коферментов (НАД, НАДФ, ФАД, ко-энзим А, метионин-аденозин). В составе коферементов они участвуют в ферментативных реакциях. Более подробно эта функция будет рассмотрена ниже.

Энергетическая (АТФ). АТФ выполняет функцию основного внутриклеточного переносчика свободной энергии. Концентрация наиболее распространенного свободного нуклеотида в клетках млекопитающих – АТФ – составляет около 1 ммоль/л.

Сигнальная (цГМФ, цАМФ) (Рисунок 35). Циклический AMФ (3́-, 5́-аденозинмонофосфат, цАМФ) – медиатор различных внеклеточных сигналов в клетках животных – образуется из АТФ в результате реакции, катализируемой аденилатциклазой. Активность аденилатциклазы регулируется комплексом взаимодействий, многие из которых инициируются через рецепторы гормонов. Внутриклеточная концентрация цАМФ (около 1 мкмоль/л) на 3 порядка ниже концентрации ATФ. Циклический цГМФ (3́-, 5́-гуанозинмонофосфат, цГМФ) служит внутриклеточным проводником внеклеточных сигналов. В некоторых случаях цГМФ выступает в роли антагониста цАМФ. цГМФ образуется из ГТФ под действием гуанилатциклазы – фермента, имеющего много общего с аденилатциклазой. Гуанилатциклаза, как и аденилатциклаза, регулируется различными эффекторами, в том числе и гормонами. Как и цАМФ, цГМФ гидролизуется фосфодиэстеразой до соответствующего 5́-монофосфата.

Регуляторная (ГТФ)

1
...