Дэвид Дарлинг — лучшие цитаты из книг, афоризмы и высказывания
image

Цитаты из книг автора «Дэвид Дарлинг»

162 
цитаты

Я понимаю слово “доказательство” не в том смысле, как его толкуют юристы, для которых два полудоказательства равны одному целому, а в том, как оно мыслится математику, для которого половина доказательства = 0, а доказательство требует исключения всяких сомнений. Карл Фридрих Гаусс
3 июня 2021

Поделиться

Он получил двойной тор, попарно соединив определенные стороны восьмиугольника, вложенного в гиперболическую плоскость.
2 июня 2021

Поделиться

Трехмерное пространство можно “нарезать” на произвольное количество тетраэдров.
2 июня 2021

Поделиться

В четырех измерениях происходит еще одна диковинная штука: сферы там могут “заузляться”.
2 июня 2021

Поделиться

Одно из простейших трехмерных многообразий – это трехмерная сфера. Подобно обычной двумерной сфере, которая представляет собой поверхность, ограничивающую шар в трехмерном пространстве, трехмерная сфера – это объект, имеющий три измерения и образующий границу четырехмерного шара.
2 июня 2021

Поделиться

Большинство поверхностей, с которыми нам приходится иметь дело в физическом мире, “ориентируемы”.
2 июня 2021

Поделиться

Погружение – не то же самое, что вложение. Не углубляясь в технические детали, скажем лишь, что в трехмерной модели (то есть при погружении) бутылки Клейна всегда будет место, где ее поверхность пересекает сама себя. Истинная же бутылка Клейна не имеет такого самопересечения, и его действительно не будет при ее вложении в четырехмерное пространство.
2 июня 2021

Поделиться

Еще тор можно вложить в четырехмерное пространство. Одним из результатов такого вложения может оказаться тор Клиффорда, названный в честь жившего в Викторианскую эпоху математика Уильяма Кингдона Клиффорда (он, кроме прочего, впервые предположил, что тяготение – это следствие геометрии пространства, в котором мы живем). В отличие от хорошо известного нам тора-бублика с четко различимыми внешней и внутренней сторонами, тор Клиффорда не разделяет пространство, а потому ни внутренней, ни наружной стороны у него просто нет.
2 июня 2021

Поделиться

Но поскольку бутылка Клейна не разделяет пространство на две различных области, то она ничего в себе и не заключает, а стало быть, ограничивает нулевой объем.
2 июня 2021

Поделиться

Эйлер также открыл ставшую знаменитой формулу многогранников (трехмерных тел с плоскими многоугольными гранями): В – Р + Г = 2, где В, Р и Г – число вершин, ребер и граней соответственно.
2 июня 2021

Поделиться

1
...
...
17