Дэвид Дарлинг — лучшие цитаты из книг, афоризмы и высказывания

Цитаты из книг автора «Дэвид Дарлинг»

162 
цитаты

В каком-то смысле интернет с его громадным объемом полезной информации, затерянной в многократно превышающем его объеме сплетен, полуправды и полной галиматьи, становится все более похожим на библиотеку Борхеса – вместилище всего на свете от глубокого научного знания до совершеннейшего бреда. Есть даже сайты, имитирующие Вавилонскую библиотеку: за долю секунды они выдают полотно случайных цепочек из букв, где иногда могут содержаться реально существующие слова или даже осмысленные обрывки информации. Когда у нас под рукой такой объем информации, кому или чему можно доверить роль третейского судьи, объективно оценивающего, что подлинно и достоверно? В конечном итоге, поскольку информация существует в виде наборов цифр, хранящихся в недрах электронных процессоров и носителей данных, ответ должен лежать где-то в области математики.
2 апреля 2022

Поделиться

а вместе с ними убедительные опровержения всех правильных решений – и все это не считая умопомрачительных объемов абсолютной белиберды. Нет никакого смысла иметь перед глазами ответ на вопрос, если в одну кучу с ним свалены все возможные комбинации символов, из которых он состоит, а вы не имеете представления, какая из них верная.
2 апреля 2022

Поделиться

В своем рассказе “Вавилонская библиотека” аргентинский писатель Хорхе Луис Борхес рассказывает о библиотеке огромного, возможно бесконечного, размера с невообразимым количеством книг. Все книги имеют одинаковый формат: “в каждой книге четыреста страниц, на каждой странице сорок строчек, в каждой строке около восьмидесяти букв черного цвета”[14]. Все тексты написаны на экзотическом языке, использующем только 22 буквенных символа, запятую, точку и пробел, но в книгах на полках библиотеки можно обнаружить все возможные комбинации этих знаков. Большинство книг содержат лишь бессмысленный набор букв; в других сочетания упорядоченны, но все равно лишены какого-либо смысла. Например, одна из книг целиком состоит из повторяющейся буквы M. В другой – все то же самое, кроме второй буквы, вместо которой стоит N. Есть книги со словами, предложениями и целыми абзацами, построенными по правилам грамматики того или иного языка, но абсолютно нелогичными. Есть исторические труды. Есть такие, в которых утверждается, что они содержат подлинную историю, но на деле они являются вымыслом. В некоторых даны описания еще не изобретенных машин и не сделанных открытий. Где-то на полках есть книга, содержащая все сочетания используемых 25 знаков, которые только можно себе представить или записать. И однако же все это гигантское хранилище книг совершенно бесполезно, поскольку, не зная заранее, что правда, а что ложь, что истина, а что вымысел, какая информация значима, а какая бессмысленна, невозможно извлечь из этого всеобъемлющего собрания символов никакой пользы. То же касается и старой идеи о том, что армия обезьян, беспорядочно стучащих по клавишам пишущих машинок, способна в конце концов произвести на свет собрание сочинений Шекспира. Они напечатают и решения всех научных проблем современности (хоть на это и потребуются триллионы лет). Проблема лишь в том, что они также напечатают и все неправильные решения
2 апреля 2022

Поделиться

Информация и беспорядок теснейшим образом связаны друг с другом. Чем более беспорядочна и случайна цепочка, тем больше информации она содержит.
1 апреля 2022

Поделиться

Особенно интересно различия между байесовским и частотным подходами проявляются, когда их применяют к математическим понятиям. К примеру, спросим себя, является ли септиллионным знаком числа пи (на сегодня неизвестным) пятерка? Заранее знать ответ невозможно, но после того, как он будет вычислен, он уже никогда не изменится: сколько ни повторяй расчет числа пи, ответ будет всегда один и тот же. Если следовать частотной интерпретации, вероятность того, что септиллионный знак будет пятеркой, равна либо 1 (достоверное событие), либо 0 (невозможное) – другими словами, это или пятерка, или нет. Допустим, доказано, что число пи нормально, то есть мы точно знаем, что в составляющей его бесконечной цепочке знаков каждая из десяти цифр имеет одинаковую плотность распределения. Согласно байесовской интерпретации, отражающей нашу степень уверенности в том, что септиллионным знаком является именно пятерка, вероятность этого – 0,1 (ведь если число пи нормально, то любой его знак, пока он не вычислен, может с одинаковой вероятностью быть любой цифрой от 0 до 9). Но вот после того, как мы этот знак вычислим (если такое когда-нибудь произойдет), вероятность уже точно будет либо 1, либо 0. Фактическое значение септиллионного знака пи нисколько не поменяется, но вероятность того, что это пятерка, изменится – именно потому, что у нас будет больше информации. Информация играет определяющую роль в байесовском подходе: по мере повышения собственной информированности мы можем корректировать значение вероятности, делая его точнее. А при наличии полной информации (скажем, когда определенный знак числа пи вычислен) значения частотной и байесовской вероятности становятся одинаковыми – если мы возьмемся заново рассчитать уже вычисленный знак пи, ответ нам будет известен заранее. Зная все нюансы физической системы (в том числе некоторый элемент случайности, как, например, при распаде атомов радия), мы можем в точности повторить эксперимент и получить частотную вероятность, идеально совпадающую с байесовской.
1 апреля 2022

Поделиться

Все, что нам осталось, – это вероятность, да и с той нет полной ясности. Существует несколько интерпретаций. Самое распространенное толкование – частотное. Согласно ему, вероятность наступления события – это предел (то есть значение, к которому нечто стремится) относительной частоты наступления события. Чтобы определить вероятность события, “фреквентист[13]” должен многократно повторять эксперимент и смотреть, сколько раз произошло нужное событие. Например, если оно происходит в 70 % случаев, значит, его вероятность 70 %. В случае с идеализированной математической монетой вероятность выпадения орла составляет ровно S, поскольку чем больше монету подбрасываешь, тем больше частота выпадения орла стремится к S. У реальной, физической монеты эта вероятность будет другой, не ровно S. Причин тому несколько. Частично влияет на результат аэродинамика броска и то, что “орел” у большинства монет тяжелее, чем выбитый на другой стороне рисунок. Имеет значение также, какой стороной вверх монету подбрасывают: вероятность, что она упадет той же стороной вверх, равна примерно 51 %, поскольку при обычном броске шансы перевернуться в воздухе четное количество раз у нее чуть выше. Но, рассматривая математическую, идеальную монету, все эти факторы можно смело игнорировать.
1 апреля 2022

Поделиться

В случае с идеализированной математической монетой вероятность выпадения орла составляет ровно S, поскольку чем больше монету подбрасываешь, тем больше частота выпадения орла стремится к S.
1 апреля 2022

Поделиться

здесь он или там, а только что он скорее здесь, чем там, – ведь его движением руководит математическая конструкция под названием “волновая функция”.
1 апреля 2022

Поделиться

Похоже, нет ничего определенного в зазеркальном мире сверхмалого. То, что мы считали крохотными твердыми частицами, – электроны и им подобные – растворились, превратившись в волны, причем даже не в материальные, а в волны вероятности. Про электрон уже нельзя сказать точно
1 апреля 2022

Поделиться

случайности не проявляются более очевидно, чем в процессе распада радиоактивных ядер. Да, действительно, с помощью наблюдений можно определить период полураспада радиоактивного вещества – то среднее время, за которое распадается половина исходных ядер во взятом образце. Но это лишь статистическая мера. Период полураспада радия-226, например, составляет 1620 лет – именно столько придется ждать, чтобы от кусочка радия массой в один грамм осталось полграмма, а остальное превратилось в газ радон или в свинец и углерод. Но если наблюдать за одним конкретным ядром радия-226 во взятом образце, абсолютно невозможно предсказать, то ли оно вместе с 37 миллиардами других ядер в том же кусочке распадется через секунду, то ли через 5000 лет. Наверняка нам известно только то, что вероятность его распада в ближайшие 1620 лет – S, то есть та же, с какой при подбрасывании монеты выпадает орел или же, наоборот, решка. И эта непредсказуемость никак не связана с точностью наших приборов или быстродействием компьютеров. На таком глубинном уровне структуры вещества случайность заложена в самой ткани реальности, а значит, может влиять и на процессы, происходящие на более высоких уровнях, внося в них элемент случайности. Крайним проявлением эффекта бабочки стало бы, например, влияние распада одного-единственного атома радия на климат нашей планеты.
1 апреля 2022

Поделиться