Читать книгу «Основы статистической обработки педагогической информации» онлайн полностью📖 — Дениса Владимировича Соломатина — MyBook.
image

































Но его легко понять в конкретном контексте: совпадает ли содержимое двух ящиков, внутри которых неизвестно что? Мы не знаем! Если хотите определить, отсутствует ли значение конкретной переменной, можно воспользоваться функцией is.na(), в качестве аргумента задав интересующее имя. Функция filter() отбирает только те строки, для проверяемые условия обращаются в TRUE, при этом исключаются как значения FALSE, так и NA. Если хотите сохранить пропущенные значения, то запрашивайте их в явном виде:

filter (flights, is.na(month) | month > 1)

Упражнения

1. Найти все рейсы, которые: имели задержку прибытия на два и более часа; прилетели в Хьюстон; управлялись компанией Delta; улетели летом; прибыл с опозданием более чем на два часа; задержались они как минимум на час, но наверстали более 30 минут в полете; отбыли между полуночью и 6 утра (включительно).

2. Функция between() из пакета dplyr тоже полезна для фильтрации. А что она делает? Можно ли использовать её для упрощения кода, необходимого для получения ответов в предыдущем задании?

3. Сколько рейсов имеет отсутствующее значение dep_time? Какие еще переменные у них отсутствуют? Что могут представлять собой эти записи в базе данных?

4. Почему значение NA^0 определено, NA / TRUE не определено, а FALSE & NA определено? Можете ли сформулировать общее правило, охватывающее и случай NA * 0?

Функция arrange () работает аналогично функции filter(), за исключением того, что вместо выбора строк, сортирует их. На вход принимаются данные и набор имен столбцов (или более сложных выражений), чтобы задать отношение порядка по возрастанию. Если укажете более одного имени столбца, то каждый последующий столбец будет сортировать значения строк с равными значениями из предыдущих столбцов:

arrange(flights, year, month, day)

Используя desc() можно переданный в аргументе столбец упорядочить по убыванию значений:

arrange(flights, desc(dep_delay))

Пропущенные значения (NA) всегда оказываются в конце сортировки.

Упражнения

1. Как использовать функцию arrange() для переноса всех пропущенных значений в начало списка? (Подсказка: применимо is.na()).

2. Сортировка рейсов позволяет найти самые задерживаемые рейсы. Найдите рейсы, которые вылетали пунктуальнее всех.

3. Отсортируйте рейсы так, чтобы найти самые скоростные перелёты.

4. Какие рейсы летали дальше всех? Какой маршрут был самым коротким?

Нередко формируемые наборы данных содержат сотни или даже тысячи записей. В таком случае проблематично даже просто найти интересующую переменную. Функция select() позволяет быстро сузить поле зрения исследователя, сконцентрировав его на нужных именах переменных. Конечно, select() не очень полезна для базы авиаперелётов, так как здесь лишь 19 переменных, но продемонстрируем общую идею:

# поимённый выбор столбцов «месяц», «день»

select(flights, month, day)

# выбор всех столбцов между «месяц» и «день» включительно

select(flights, month:day)

# выбор всех столбцов, кроме тех, что лежат между «месяц» и «день» включительно

select(flights, -(month:day))

Существуют вспомогательные функции, которые уместно вызывать внутри select(): функция starts_with("абв") выбирает имена столбцов начинающихся с «абв»; функция ends_with("эюя") выбирает имена столбцов заканчивающиеся на «эюя»; функция contains("клм") выбирает имена содержаие подстроку «клм»; функция matches("(.)\\1") выбирает переменные, имена которых соответствуют заданному регулярному выражению, конкретно в данном случае магическим образом выбираются переменные, содержащие повторяющиеся символы, подробнее о регулярных выражениях в строках расскажем в соответствующей главе; вызов num_range("m", 2:4) соответствует набору m2, m3, m4. Всегда можно заглянуть в ?select для получения более подробной информации.

А еще, select() можно использовать для переименования переменных, но это редко когда бывает полезным, так как отбрасывает не упомянутые явно переменные. Вместо этого для переименования используется функция rename(), который является вариантом select(), но сохраняет все переменные, которые не указаны явно:

rename(flights, год = year)

Другой вариант использования select(), совместно со вспомогательной функцией everything(), бывает необходим если есть несколько переменных, которые нужно переместить в начало базы данных. Например, месяц (month) и день (day) вылета будут показаны первыми при выводе данных из таблицы, содержащей информацию обо всех авиаперелётах (flights) по команде:

select (flights, month, day, everything ())

Аналогично запланированную дату и время полёта (time_hour), и время, проведенное в воздухе, выраженное в минутах (air_time) можно перекинуть в начало.

Упражнения

1. Примените мозговой штурм, чтобы найти как можно больше способов выборки значений переменных содержащих информацию о времени из базы данных flights.

2. Что произойдет, если имя одной переменной использовать несколько раз при вызове функции select()?

3. Что делает функция one_of()? Насколько полезно её применение в сочетании с вектором c("month", "day")?

4. Является ли результатом выполнения следующего кода неожиданным? Что вспомогательные функции выбора переменных в нём возвращают по умолчанию? Как изменить их значение по умолчанию?

select(flights, -contains("TIME"))

Помимо выборки существующих столбцов, полей таблицы базы данных, переменных, бывает необходимым добавление новых столбцов, которые хранят значения, являющиеся функциями от существующих. Это выполняется путём обращения к функции mutate(), которая всегда добавляет новые столбцы в конце имеющегося набор данных. Поэтому создадим более узкий набор данных, чтобы видеть новые переменные. Помните, что в RStudio самый простой способ увидеть все столбцы таблицы это вызов функции view(). Создадим укороченный_вариант_таблицы, содержащий все поля между «год» (year) и «день» (day) включительно, плюс поля, содержащие информацию о задержках (заканчивающиеся на delay), покрытом расстоянии (distance) и времени полёта (air_time) в минутах:

укороченный_вариант_таблицы <– select(flights,

year:day,

ends_with("delay"),

distance,

air_time)

Теперь добавим вычисляемые поля с информацией об опоздании, – задержке вылета минус задержка прилета, в минутах, и о средней скорости полёта. Обратите внимание, что можно ссылаться на столбцы, которые уже созданы. Если вдруг захотите сохранить только новые переменные, то используйте transmute() вместо mutate():

mutate(укороченный_вариант_таблицы,

опоздание = dep_delay – arr_delay,

скорость = distance / air_time * 60,

часы_полёта= air_time / 60,

опоздание_в_каждом_часе = опоздание / часы_полёта )

Существует много функций для создания новых переменных, которые можно комбинировать с mutate(). Ключевое их свойство заключается в том, что функция должна быть пригодной для обработки векторов, то есть она должна принимать вектор значений на входе и возвращать вектор с тем же количеством значений на выходе. Нет возможности перечислить все такие функции, но приведём некоторые из реально используемых.

Арифметические операторы: +, -, *, /, ^. Все они работают с векторами используя так называемые «правила рециркуляции», заключающиеся в том, что если один параметр короче другого, то произойдет автоматическое удлинение до равного размера путём клонирования короткого вектора достаточное количество раз. Это полезно, когда один из аргументов – число. В примере выше так были вычислены часы_полёта делением вектора на скаляр, а скорость умножением вектора на скаляр. Арифметические операторы также полезны в связке с агрегирующими функциями, о которых узнаете позже. Например, x / sum(x) вычисляет долю от общей суммы значений переменной, а y – mean(y) вычисляет отклонение величины от среднего.

Модулярная арифметика: %/% (целочисленное деление) и %% (остаток), здесь x == y * (x %/% y) + (x %% y). Модулярная арифметика очень удобный инструмент, потому что позволяет представлять большие целые числа сравнительно небольшими остатками. Например, в наборе данных flights можно выделить полные часы и оставшиеся минуты из общей продолжительности полёта, представленной в формате ЧЧММ или ЧММ (dep_time). Тогда вместо хранения и выполнения различных операций над одним большим числом, можно будет хранить и выполнять операции над двумя маленькими:

transmute(flights,

dep_time,

час = dep_time %/% 100,

минута = dep_time %% 100)

Логарифмические функции: log(), log2(), log10(), являются невероятно полезным преобразованием при работе с данными, диапазон которых охватывает несколько порядков наблюдаемой величины. Они также преобразуют мультипликативные операции в аддитивные, к этой особенности вернемся в разделе, посвященном моделированию. При прочих равных условиях, рекомендуется использовать функцию log2() так как её значения легко интерпретировать: разница в 1 на логарифмической линейке соответствует удвоению в исходном масштабе, а разница в -1 соответствует делению пополам.

Смещения: вперёд lead() и назад lag() позволяют просматривать последующие и предыдущие значения списка. Бывают необходимо вычислить приращение аргумента, например, х – lag(x), или проверить неизменность его значений, выражением x != lag(x). Смещения особенно полезны в сочетании с group_by(), но не будем забегать вперёд.

Накопительные и скользящие агрегаторы: R предоставляет функции для вычисления накапливаемой суммы cumsum(), произведения cumprod(), минимума cummin() и максимума cummax() элементов списка; кроме того, dplyr имеет функцию cummean() для вычисления среднего значения. Если нужны скользящие агрегаторы, когда сумма вычисляется по скользящему окну, то обращаются к функционалу пакета RcppRoll.

Логические сравнения: < (меньше), <= (не больше), > (больше), >= (не меньше), != (не равны), и == (равны), о них мы узнали ранее. Напомню лишь, если осуществляется сложная последовательность логических операций, то настоятельно рекомендуется сохранять промежуточные значения в отдельных вспомогательных переменных, чтобы проверить значение выражения на каждом шаге вычислений.

Ранжирование: объединяет в себе целый ряд функций, начиная с min_rank(), которая осуществляет вычисление простого порядкового номера (например, 1-й, 2-й, 3-й, 4-й). По умолчанию присваиваются меньшие номера меньшим значениям, но можно воспользоваться функцией desc() для обращения порядка значений аргумента, чтобы придать наибольшие порядковым номера наименьшим значениям элементов исходного списка. Если min_rank() не делает то, что нужно, загляните в описание функций ранжирования на страницах справки для получения более подробной информации.

Упражнения

1. На переменные, хранящие длительность перелёта, удобно смотреть, но трудно выполнять операции над ними, так как они не совсем порядковые числа, за 159 (которое символизирует 1 час, 59 минут) идет сразу 200 (2 часа ровно). Конвертируйте их в более удобное представление, чтобы хранилось общее количество минут начиная с полуночи.

2. Сравните значения часы_полёта с опоздание_в_каждом_часе. Что надеялись увидеть и что увидели? Что нужно сделать, чтобы исправить ошибку?

3. Найдите 10 самых задерживаемых рейсов, используя функции ранжирования. Как это связано? Внимательно прочитайте текст документация по min_rank().

4. Что возвращает 2:4 – 5:8 и почему?

5. Какие тригонометрические функции определены в R?

Последняя ключевая функция summary(), – она собирает сводную статистику по переменным при помощи вспомогательных функций. Например, среднее значение (mean) переменной dep_delay посчитается в переменную средняя_задержка_рейсов:

summarise(flights, средняя_задержка_рейсов = mean(dep_delay, na.rm = TRUE))

Ниже объясним подробно, что значит последний параметр na.rm = TRUE. Функция summary() не очень полезна, если используется без вспомогательной функции group_by(), которая переключает разбивает анализ всего набора данных на отдельные группы. Когда вызывается функция из пакета dplyr на сгруппированных данных, автоматически подключается group_by() для распараллеливания вычислений в целях повышения производительности и дробления информации. Например, если применить точно такой же вызов как в предыдущем примере, но для сгруппированных по дате записях, то на выходе получится средняя задержка по дням:

сгруппированные_по_дням <– group_by(flights, year, month, day)

summarise(сгруппированные_по_дням,

средняя_задержка_рейсов_по_датам = mean(dep_delay, na.rm = TRUE))

Вызов функций group_by() совместно с summary() чаще всего используется при работе в пакете dplyr для получения статистических отчетов по группам. Но прежде, чем погрузиться в детали, дополнительно изложим одну техническую идею, касающуюся обработки информации путём её направления по специальным каналам. Представьте, что хотим исследовать закономерность между расстоянием и средней задержкой рейса для каждого пункта назначения. Опираясь на имеющиеся знания о возможностях dplyr, для этого достаточно использовать такой код:

группы_рейсов_по_месту_назначения <– group_by(flights, dest)

задержки <– summarise(группы_рейсов_по_месту_назначения,

опозданий = n(), средняя_длина_маршрута = mean(distance, na.rm = TRUE),

средняя_задержка = mean(arr_delay, na.rm = TRUE))

Оставим в выборке рейсы имеющие более сотни регулярных опозданий и, например, не на московских направлениях:

задержки <– filter(задержки, опозданий > 100, dest != "MSK")

Визуализируем оставшиеся записи:

ggplot(data = задержки, mapping =

aes(x = средняя_длина_маршрута, y = средняя_задержка)) +

geom_point(aes(size = опозданий), alpha = 1/5) +

geom_smooth(se = FALSE)



Похоже, что задержки растут с увеличением расстояния до ~750 миль, а затем сокращаются. Неужели, когда рейсы становятся длиннее, появляется возможность компенсировать опоздание находясь в полёте?

Предварительно было пройдено три вспомогательных этапа подготовки данных:

1. Сгруппированы рейсы по направлениям.

2. В каждой из групп усреднены расстояния, длительность задержки и вычислено количество опоздавших рейсов.

3. Отфильтрованы шумы и аэропорт, который не подчиняется законам логики.

Этот код немного перегружен, так как каждому промежуточному блоку данных присвоено имя. Вспомогательные таблицы сохранялись, даже когда их содержимое не востребовано на заключительном этапе, и замедляли анализ. Но есть отличный способ справиться с обозначенной проблемой посредством настройки каналов передачи данных служебным оператором %>%:

задержки <– flights %>%

group_by(dest) %>%

summarise(

опозданий = n(),

средняя_длина_маршрута = mean(distance, na.rm = TRUE),

средняя_задержка = mean(arr_delay, na.rm = TRUE) ) %>%

filter(опозданий > 100, dest != " MSK ")

Такой синтаксис фокусирует внимание исследователя на выполняемых преобразованиях, а не на том, что получается на каждом из вспомогательных этапов, и делает код более читаемым. Это звучит как ряд предписаний: сгруппируй, после этого подведи итоги, после этого отфильтруй полученное. Как подсказывает здравый смысл, можно читать %>% в коде как «после этого». По сути же, формируется информационный канал последовательной передачи данных на обработку от одной функции через другую к третьей. Технически, x %>% f(y) превращается в f(x, y), а x %>% f(y) %>% g(z) превращается в композицию функций g(f(x, y), z) и так далее, что позволяет использовать канал для объединения нескольких операций в одну, которую можно читать слева направо, сверху вниз. Будем часто пользоваться каналами, так как это значительно упрощает читаемость кода, разберём их более подробно в соответствующем разделе.

Работа с каналами это одна из ключевых особенностей tidyverse. Единственным исключением является ggplot2, так как библиотека была написано до появления такой возможности в R. К сожалению, являющаяся наследником ggplot2 библиотека ggvis хотя и поддерживает работу с каналами, но пока еще не в полной мере.









1
...
...
10