Читать книгу «Основы статистической обработки педагогической информации» онлайн полностью📖 — Дениса Владимировича Соломатина — MyBook.
image

Глава 1. Первое знакомство

Внимательный читатель наверняка понял из введения, что эта книга поможет в сфере анализа педагогических данных с помощью R: научит, как импортировать данные в R, систематизировать их наиболее эффективным способом, преобразовать данные, визуализировать и смоделировать возможную динамику. Аналогично тому, как начинающий математик учится ставить мысленные эксперименты, формулировать гипотезы, рассуждать по аналогии, формировать доказательную базу, вы узнаете, как представлять данные, строить графики и многое другое. Эти навыки позволяют состояться онлайн-учителю как исследователю, и в этой книге собраны проверенные оптимальные способы работы с R, освоив которые будет легко использовать язык графиков, чтобы экономить время. Кроме того, станет ясным, как достичь понимания в процессе визуализации и исследования данных. Наука о данных – это захватывающая дисциплина, которая позволяет превратить необработанные исходные разрозненные данные в систематизированные, породив понимание и новое знание. Таким образом, основная цель этой книги – помочь читателю изучить наиболее важные инструменты в R, позволяющие заниматься наукой о педагогических данных. После прочтения этой книги у вас появятся инструменты для решения широкого круга задач средствами R.

§1. Основы статистической обработки информацией

Наука о данных – это огромная сфера человеческой деятельности, общепринятый подход к освоению которой, прослеживающийся в каждом исследовательском проекте как правило следующий. Сначала данные импортируются в R. Обычно это означает, что берете данные, хранящиеся в файле, базе данных или интернете, и загружаете их в таблицу данных R. Если не можете импортировать свои данные в R, то дальнейший анализ данных в R не представляется возможным и стоит рассмотреть альтернативные варианты.

После того, как импортировали свои данные в R, неплохо было бы привести их в порядок. Очистка ваших данных означает хранение их в согласованном виде, который соответствует семантике набора данных. Короче говоря, когда данные структурированы, каждый столбец является переменной, и каждый ряд – это наблюдение. Структурированные отфильтрованные данные важны еще и потому, что последовательная запись позволяет сосредоточиться на вопросах о непосредственно самих данных, а не на вопросах о получении данные в правильном формате для разных функций.

После того, как у вас есть структурированные данные, общим первым шагом является их преобразование, включающее в себя:

1) фильтрацию по наблюдениям (например, все люди обучающиеся в одном городе, или все данные за последний учебный год);

2) создание новых переменных, которые являются функциями от существующих переменных (например, вычисление продолжительности обучения или длительности прохождения тестов);

3) вычисление набора сводных статистических данных (например, наивысший балл из набранных обучающимися).

После того, как у вас есть структурированные данные с вычисленными переменными запускаются два основных генератора новых знаний: визуализация и моделирование. Оба имеют свои сильные и слабые стороны, и любой реальный анализ будет происходить в процессе их многократного чередования.

Визуализация – это фундаментальная человеческая деятельность. Одна хорошая визуализация покажет вам то, чего даже не ожидали, или поднимет новые вопросы об анализируемых данных. Хорошая визуализация также может намекнуть, что задаете неправильный вопрос, или что нужно собирать дополнительные данные. Визуализация может вдохновить вас, но не стоит обольщаться, так как для интерпретации результатов всё же требуется участие человека.

Моделирование является дополнительным инструментам визуализации. После того, как достаточно точно сформулировали свои вопросы, можете попробовать использовать математическую модель, чтобы ответить на них. Модели в R принципиально являются математическими и представляют собой вычислительный инструментарий, поэтому они хорошо масштабируются. Нередко бывает дешевле купить больше компьютеров, чем это купить больше мозгов. Но каждая модель при этом генерирует лишь предположения, и по своей природе математическая модель не может подвергать сомнению свои собственные предположения. Это означает, что модель сама по себе не может сделать принципиальное открытие.

Последняя ступень анализа данных: представление полученных результатов, – самая критическая часть любого аналитического проекта. При этом не важно, насколько хороши ваши модели или визуализации, если не можете передать свои идеи и результаты другим людям.

Объединяет все названные этапы – программирование, оно красной нитью проходит через каждый этап проекта, но не нужно быть опытным программистом, чтобы анализировать данные, достаточно знания базовых концепций, и желания постоянно улучшать свои навыки программирования, так как последнее позволяет автоматизировать частые задачи и проще решать новые.

Вы будете использовать названные инструменты практически в каждом проекте, но для большинства проектов их недостаточно. Есть эмпирический принцип 80/20 (закон Парето): можно решить около 80% задач каждого проекта используя методы, которыми уже владеете, но всегда понадобятся новые знания, чтобы справиться с оставшимися 20%.

Предыдущее описание инструментов обработки данных организована примерно в соответствии с той последовательностью, в которой они используются в статистическом анализе (хотя, конечно, любое правило имеет исключения). По собственному опыту, лучший порядок их освоения таков:

1) Начинать изучение с импорта данных, их очистки и систематизации является неоптимальным, так как 80% времени будет занято рутиной. Вместо этого, начнем с визуализации и преобразования данных, которые уже были импортированы и отфильтрованы. Таким образом, когда будете импортировать и приводить в порядок собственные данные, ваша мотивация останется высокой, потому что понимаете, к чему движетесь.

2) Некоторые темы лучше объяснить объединив их. Например, легче понять, как работают модели, если уже знаете о визуализации, структурированных данных, и программировании.

3) Инструменты программирования не самоцель, но все же позволяют взяться за решение значительно более сложных проблем. Поэтому весь спектр инструментов программирования будет представлен в середине книги, а затем увидите, как они могут сочетаться с другими статистическими инструментами, при решении интересных задач моделирования.

В рамках каждой главы постараемся придерживаться подхода из введения по аналогичному шаблону: начинать с некоторых мотивирующих примеров, чтобы увидеть картину в целом, а затем погрузиться в детали. Каждый раздел книги сопровождается упражнениями, позволяющими на практике закреплять пройденный материал. Хотя и бывает заманчивым пропускать их, но очень хорошо сказал Д. Пойа по этому поводу: «лучший способ научиться решать задачи состоит в том, чтобы самому решать эти задачи».

Есть несколько важных тем, которые в данной книге не будут охвачены, с той лишь целью, чтобы сосредоточиться на самом главном и как можно быстрее начать работать в R. А именно, не будут охвачены популярные ныне большие данные (так называемые «биг дата»). Сфокусируемся на небольших, располагаемых в памяти персонального компьютера наборах данных, что вполне оправдано для начала, ведь невозможно заниматься большими данными, если у вас нет опыта работы с малыми. При этом, сам инструмент освоите, и будете легко обрабатывать сотни мегабайт данных, и с тем же успехом сможете использовать полученные навыки для работы с 1-2 Гб данных. Для сравнения, базы рабочих учебных программ дисциплин подготавливаемых каждым преподавателем ежегодно занимают порядка 1 Гб. Если же регулярно работаете с большими данными (порядка 10-100 Гб и более), то должны будете узнать больше об иных инструментах для их обработки. Эта книга не учит работе с большими таблицами данных, появляющимися на международных образовательных платформах, из облачных хранилищ. Но если действительно работаете с большими данными, то для повышения производительности своего труда стоит приложить дополнительные усилия к освоению необходимых инструментов.

Если данные действительно большие, тщательно подумайте, может ли задача с большими данными быть решена на небольших наборах данных. Хотя исходные данные могут быть большими, часто данные, необходимые для ответа на конкретный вопрос, невелики. Возможно, найдется подмножество, подвыборка или сводка, которая помещается в память и все еще позволяет ответить на интересующий вопрос. Проблема здесь заключается в том, чтобы найти правильные небольшие данные, что часто требует много итераций. Альтернативный вариант заключается в том, что задача с большими данными является совокупностью задач с малыми входными данными, а значит, решение легко поддается распараллеливанию. Например, каждая подзадача может поместиться в локальной памяти, но у вас их миллионы. В этом примере можно построить соответствующую модель для каждого наблюдения в наборе данных. Это было бы тривиально, если бы было всего 10 или 100 наблюдений, но вместо этого у вас их миллион. К счастью, порой анализ каждого наблюдения можно осуществлять независимо от других, тогда понадобится система (например, Hadoop или Spark), позволяющая отправлять различные наборы данных на разные компьютеры для параллельной обработки. После того, как нашли способ решения своей задачи для фиксированного подмножества входных данных с помощью описанных в этой книге инструментов, примените иные инструменты, для решения её на всём наборе данных.

Далее, из этой книги ничего не узнаете о Python, Julia или любом другом языке программирования, полезном при обработке данных. Это не потому, что эти инструменты плохие, отнюдь. На практике большинство команд аналитиков используют смешение языков, часто такое происходит с R и Python. Однако, лучше осваивать один инструмент за раз. Подобно ныряльщику за жемчугом, если сгруппироваться при входе, то движение к заветной цели в новой среде будет и глубже и быстрее. Это вовсе не значит, что следует изучить только одну тему, хотелось лишь напомнить, что как правило, учиться гораздо легче, если во время обучения методом погружения придерживаться одного направления. Следует так же стремиться узнавать новое на протяжении всей своей карьеры онлайн-учителя.

Поистине, R это отличная отправная точка для путешествия в мире науки о данных. Ведь R это не просто язык программирования, а интерактивная среда для совместной работы над анализом научных данных. Для поддержки взаимодействия пользователей, R является гораздо более гибким языком, чем многие из них его ровесники. Эта гибкость имеет своими недостатки, но большой плюс в том, как легко можно развивать адаптированные грамматики для конкретных частей процесса обработки данных. Эти вспомогательные мини-языки помогают думать о решаемых проблемах в привычной терминологии, поддерживая пластичное взаимодействие между вашим мозгом и компьютером.

Эта книга посвящена исключительно табличным данным: коллекции значений, каждая из которых связана с переменной и наблюдением. При том, что есть много наборов данных, которые не вписываются естественным образом в эту парадигму, например, изображения, звуки, деревья и текст. Но таблицы чрезвычайно распространены в науке и промышленности, они являются отличной стартовой площадкой для анализа данных.