Подобный график говорит лишь о том, что в вашем примере имеет место неоднородность — вы сравниваете яблоки с апельсинами. В таком случае лучше сразу сказать, что вы имеете дело с бимодальным распределением, и сообщить о двух модах. А еще лучше разделить группу на две подгруппы и собрать статистические данные для каждой.
Этот пример наглядно показывает разницу между средним арифметическим, медианой и модой. Так как женщин в мире несколько больше, чем мужчин, медиана и мода будут равны нулю, в то время как среднее арифметическое будет близко к единице (возможно, оно будет равно 0,98 или около того).
Будьте осторожны со средними, а также с тем, как их интерпретируют. Один из способов ввести в заблуждение, используя средние, — усреднять данные по выборкам из несопоставимых совокупностей. Этот способ может привести к абсурдным выводам, как то:
В среднем у каждого человека одно яичко[18].
Вы можете поступить так же, как в таком случае делают многие компании, и заявить о «прибыли на одного сотрудника», поделив прибыль компании, равную 210 тысячам долларов, на пятерых:
средняя зарплата сотрудника: 66 тысяч долларов;
средняя зарплата владельцев: 100 тысяч долларов;
годовая прибыль на одного сотрудника: 42 тысячи долларов.
Но важно помнить, что собирают статистические данные люди, и никто иной. Люди выбирают, что считать, как считать, какими результатами делиться, какими словами их описывать и как интерпретировать числа[3]. Статистика — это не факты, это интерпретация.
Это простая, но очень глубокая мысль: если мы поймем, что знаем далеко не всё, то сможем узнать больше. Если мы будем думать, что знаем всё, научиться чему-нибудь будет невозможно.
Наш мозг — такой механизм, который прекрасно придумывает и рассказывает истории: если нам дать оригинальную идею, мы можем легко придумать заковыристое объяснение, почему она хороша. Но в этом и заключается различие между образным и критическим мышлением, между ложью и истиной: истина подкрепляется фактами, объективными доказательствами.