В этой главе рассматривается предмет компьютерной графики как научно-прикладной дисциплины, выделяются ее разделы, имеющие непосредственное отношение к дизайну, и сферы практической деятельности, в которых в настоящее время требуется квалифицированный труд специалистов, получивших подготовку в области компьютерной графики.
Предмет компьютерной графики – автоматизированные информационные процессы, связанные с различными аспектами работы с изображениями, представленными в цифровом виде в соответствии с той или иной информационной моделью. В наиболее общей форме такие информационные процессы можно разбить на три категории:
• создание изображения при автоматическом или автоматизированном построении его информационной модели;
• модификация изображения с помощью воздействия на его информационную модель;
• преобразование изображения, представленного в формате информационной модели в объект визуальной коммуникации.
Первая категория информационных процессов формирует первичную информационную модель изображения, с которой впоследствии можно работать, внося в нее изменения средствами программ для работы с графикой, или сохранять в формате графических файлов для последующего использования. В результате этого будет создан ранее не существовавший файл, содержащий информационную модель, представленную в соответствии с тем или иным форматом. Пример такого процесса – сканирование изображения. Подробнее процессы первой категории рассмотрены в главе 3.2 и разд. 2.9.5.
Вторая категория включает в себя все, что относится к редактированию изображения. Пример такого процесса – составление коллажа из имеющихся изображений. Для процессов этой категории характерно внесение изменений в ранее построенную информационную модель с сохранением полученного результата в исходном или новом файле (файлах). Подобным процессам посвящена большая часть настоящего учебника.
Третья категория информационных процессов преобразует цифровое представление информационной модели изображения в объект, доступный для непосредственного визуального восприятия. Иногда эти процессы называют выводом изображения. Примером может служить печать цифровой фотографии в лаборатории или просмотр той же фотографии на экране компьютера. Подробнее эти процессы рассмотрены в главе 2.10 и разд. 3.1.5–3.1.6.
Под предметной областью понимается совокупность объектов, имеющих существенное отношение к той или иной сфере деятельности и важных для этой сферы связей между этими объектами. Объектная диаграмма (рис. 1.1.1) представляет собой схематическое графическое изображение этих объектов и связей.
Рис. 1.1.1. Объекты и связи в предметной области компьютерной графики
Семантика объектов и связей, представленных на объектной диаграмме, рассматривается в следующих разделах.
Информационная модель объекта или явления – совокупность структурированных данных, достаточно полно описывающая существенные для задач моделирования (релевантные) аспекты этого объекта или явления, и операций, с помощью которых пользователь может изучать модель и вносить в нее изменения. Применение информационной модели взамен реального явления или объекта дает возможность работать с ними с помощью автоматизированных информационных технологий. Преимущества такого подхода по сравнению с традиционной технологией обработки изображений следующие:
• сокращение времени за счет использования быстродействующих компьютеров;
• удешевление благодаря исключению из процесса дорогостоящих материальных объектов;
• упрощение за счет удобной программной реализации сложных операций;
• возможность создания абсолютно точных копий изображений с пренебрежимо малыми затратами времени и средств;
• возможность доступа пользователя к изображениям через современные средства телекоммуникаций.
В приведенном списке перечислены только основные преимущества, но и их вполне достаточно, чтобы сделать очевидный вывод – работа с информационными моделями изображения средствами компьютерной графики позволяет резко увеличить эффективность труда во многих отраслях деятельности, связанной с созданием и обработкой изображений.
Информационная модель тесно связана с другим объектом предметной области компьютерной графики – программными средствами, поскольку только с их помощью можно построить и отредактировать информационную модель изображения, а также получить по этой модели изображение в визуально воспринимаемом виде.
Программным средством называется совокупность программных модулей, обеспечивающих автоматизацию выполнения операций с данными, представленными в формате той или иной информационной модели. Программные средства выполняют две основные функции:
• автоматизируют выполнение рутинных операций и их последовательностей за счет алгоритмов, реализованных в программных модулях;
• обеспечивают возможность воздействия пользователя на состав и значения параметров информационной модели через средства интерфейса пользователя (как правило, графического).
Программные средства обычно обеспечивают автоматизацию решения комплекса задач, относящихся к сравнительно четко очерченной прикладной области. В компьютерной графике чаще других встречаются следующие категории программных средств:
• графические редакторы;
• подключаемые модули (плагины);
• драйверы графических устройств;
• средства просмотра изображений;
• архиваторы изображений;
• средства тестирования и настройки аппаратных устройств.
Графический редактор представляет собой программное средство для организации работы пользователя по изменению состава и значений параметров информационной модели изображения. Такая работа называется редактированием, что и определяет название данной категории программных средств. Как правило, операции редактирования выполняются в интерактивном режиме. К наиболее известным (на момент написания книги – середину 2007 года) графическим редакторам относятся Adobe Photoshop CS3, CorelDRAW X3, Corel Painter 9.
Подключаемый модуль (плагин) представляет собой отдельно разрабатываемое и распространяемое программное средство для выполнения какой-либо специфической операции над информационной моделью изображения, не реализованной в составе графического редактора. Выпускавшиеся ранее подключаемые модули могли работать только совместно с графическими редакторами, но некоторые современные образцы могут функционировать и автономно, являясь, по сути дела, самостоятельными графическими программами и взаимодействуя с графическими редакторами на уровне файлов информационных моделей. К функциям, чаще всего реализуемым в виде подключаемых модулей, относятся:
• добавление графических эффектов (см. разд. 2.9.2 и 3.9.1);
• глобальная коррекция изображения (см. разд. 3.9.2);
• допечатная обработка изображения (см. главу 3.11);
• сложные схемы выделения части изображения (см. разд. 3.5.4);
• генерирование изображений или их отдельных фрагментов (см. разд. 2.9.2).
С некоторой долей условности к автономно работающим подключаемым модулям, реализующим последнюю из перечисленных функций, можно отнести все программные средства, формирующие результат в виде изображения, например, системы трехмерного моделирования.
Примечание
Во многих публикациях трехмерное моделирование включается в предметную область компьютерной графики. Это представляется не совсем правомерным, поскольку информационная модель трехмерного моделирования описывает не изображение, а объемное тело. Тем не менее, в трехмерном моделировании интенсивно используются информационные модели изображений и приемы работы с ними, поэтому вполне логично включить его в состав прикладных областей применения компьютерной графики.
Драйвер графического устройства – специализированная программа, в функции которой входит управление аппаратными средствами, например, устройствами ввода и вывода. Современные драйверы обычно имеют в своем составе средства интерфейса с пользователем, позволяющие настраивать графическое устройство на желаемый режим работы. Как правило, драйверы работают совместно с графическими редакторами или другими программными средствами компьютерной графики, и их автономное функционирование не предусматривается.
Средства просмотра изображений представляют собой программы, позволяющие преобразовывать информационную модель, представленную в формате графического файла, в изображение на экране компьютера с целью визуального анализа. Обычно программные средства этой категории позволяют работать со многими форматами представления изображений и включают в себя большое число дополнительных функций (например, организацию показа изображений в виде слайд-шоу). Наиболее известные программные средства этой категории – ACDSee и Ifran View.
Средства организации архивов изображений – программы, осуществляющие хранение большого числа изображений и их эффективный поиск по различным критериям. Такие программы позволяют быстро находить нужные изображения, хранящиеся на различных носителях. Как правило, архивы изображений хранят на CD или DVD. Программа организации архива строит по информационной модели изображения миниатюру (уменьшенную копию изображения, имеющую небольшой размер) и помещает ее в базу данных совместно с именем файла, сведениями о том, где он расположен, и метаданными (сведениями, описывающими изображение).
К аппаратным средствам, применяющимся в компьютерной графике, относятся:
• Компьютеры, в состав которых входят:
– процессор;
– оперативная память;
– накопители;
– видеокарта с графическим ускорителем.
• Устройства графического вывода:
– мониторы;
– видеопроекторы;
– печатающие устройства (лазерные, струйные и термосублимационные принтеры, фотонаборные автоматы, слайд-принтеры и цифровые минилабы).
• Устройства графического ввода:
– манипуляторы;
– графические планшеты;
– сканеры;
– цифровые камеры.
• Специальные устройства (например, устройства для вывода голограмм и стереопар).
В рамках настоящего учебника нет смысла подробно останавливаться на назначении стандартных устройств компьютера, ограничимся рассмотрением специфических требований, которые на них накладывают типовые задачи компьютерной графики.
При работе с информационными моделями сложных векторных или пиксельных изображений с высоким разрешением (см. разд. 3.1.2) задачи компьютерной графики становятся очень ресурсоемкими. Поэтому общий принцип выбора процессора: «чем мощнее – тем лучше». На момент написания книги минимальными параметрами для графического компьютера считались тактовая частота процессора не ниже 2,5 ГГц и объем кэш-памяти второго уровня, встроенной в ядро процессора, не менее 512 Кбайт.
Чем больше объем оперативной памяти, тем быстрее выполняются операции над большими по размеру информационными моделями изображений. Это обусловлено тем, что в процессе обработки данные большого изображения не помещаются в оперативную память целиком, и их приходится "подкачивать" по частям. Чем больше размер этих частей, тем реже приходится выполнять подкачку в процессе работы, тем быстрее выполняется обработка. Поэтому для работы с небольшими изображениями (например, с цифровыми фотографиями, снятыми камерами с размерами сенсора до 10 мегапикселов) объем оперативной памяти может составлять 1 Гбайт, для больших изображений желательны большие объемы.
От емкости накопителя на жестком диске (винчестере) зависит объем данных, находящихся в оперативном распоряжении пользователя. Достаточно много дисковой памяти требуется для организации подкачки данных в оперативную память. Обычно компьютеры для графических работ комплектуют накопителями объемом 120–250 Гбайт, но для профессиональной работы нелишним будет и больший объем. Большое влияние на быстродействие оказывает и скорость передачи данных между накопителем и оперативной памятью, она не должна быть менее 100 Мбайт/с – в противном случае подкачка данных сильно замедляется.
В отличие от задач трехмерного или имитационного моделирования и компьютерных игр, компьютерная графика не предъявляет очень высоких требований к видеосистеме компьютера, основой которой является видеокарта. Основная задача видеокарты – получение данных пиксельной информационной модели и преобразование их в видеосигнал, формирующий изображение на экране монитора. Причем передача видеосигнала на монитор должна выполняться достаточно быстро, чтобы изображение на нем не мерцало (современные стандарты рекомендуют частоту обновления не ниже 100 Гц). Чтобы выполнить это условие, данные изображения должны полностью помещаться в видеопамять. Подробнее расчеты объема памяти, достаточного для хранения информационной модели пиксельного изображения, представлены в разд. 3.1.2. Некоторые данные о минимальном объеме видеопамяти приведены в табл. 1.1.1.
Для мониторов наиболее распространенных моделей вполне достаточно видеопамяти объемом 64 Мбайта. Однако если в составе видеокарты имеется графический ускоритель (что для современных моделей стало стандартом де-факто), этот объем должен быть, как минимум, в два раза больше, т. е. 128 Мбайт. Для мониторов с большим размером растра следует рассчитывать объем видеопамяти и подбирать соответствующую видеокарту индивидуально. Следует заметить, что современные видеокарты могут по стоимости в несколько раз превышать все остальные устройства компьютера, вместе взятые, поэтому к ее выбору необходимо подходить рационально. Наиболее мощные видеокарты выпускаются для нужд специалистов в анимационном трехмерном моделировании, видеомонтаже и любителей компьютерных игр, а в задачах компьютерной графики их возможности оказываются востребованными далеко не полностью.
О проекте
О подписке