Я заметил один любопытный феномен. Хотя студенты часто жалуются, что статистика – неинтересная и малопонятная наука, тем не менее, выйдя из аудитории, они охотно обсуждают свои спортивные достижения и средние результаты, которых добились летом, или коэффициент изменчивости погоды (в холодное время года), или свои баллы в колледже (этот вопрос не волнует их только во время каникул). Они признают, что «рейтинг распасовщика» – статистический показатель, выражающий в одном числе эффективность действий куортербека[2], – весьма некорректно отражает качество его игры. Те же самые исходные данные (коэффициент удачного завершения, среднее число ярдов на каждую попытку паса, процент тачдаун-пасов[3] на каждую попытку паса и коэффициент перехватов мяча) можно было бы скомбинировать как-то по-другому, например присвоить каждой составляющей определенный весовой коэффициент и в результате создать другой, не менее надежный показатель эффективности действий куортербека. Однако все, кто интересуется американским футболом, должны признать, что наличие рейтинга распасовщика весьма удобно.
Является ли данный рейтинг идеальным? Разумеется нет. Статистика крайне редко предлагает единственно верный вариант оценивания чего бы то ни было. Предоставляет ли данный показатель возможность получить важную информацию? Разумеется да. Это превосходный инструмент, позволяющий быстро сравнивать эффективность действий двух куортербеков в один и тот же день. Я болею за команду Chicago Bears. Во время серии плей-офф 2011 года Chicago Bears играли с Packers (Packers одержали победу). Я мог бы описать этот матч множеством способов, потратив не одну страницу на его анализ. Но вот более сжатый вариант: рейтинг распасовщика куортербека Chicago Bears Джея Катлера составил в тот день 31,8, а куортербека Green Bay Аарона Роджерса – 55,4. Аналогично мы можем сравнить эффективность действий Джея Катлера с эффективностью его же действий в одной из предыдущих игр того же сезона против команды Green Bay, когда его рейтинг распасовщика равнялся 85,6. Эти показатели способны многое сказать тому, кто хочет понять, почему ранее в том сезоне Chicago Bears выиграли у Packers, а затем потерпели поражение в серии плей-офф.
Это может служить весьма поучительным – и достаточно лаконичным – объяснением итогов футбольного сезона 2011 года. Однако нет ли здесь чрезмерного упрощения? Да, именно в этом и заключается сила и слабость любой описательной статистики. Один-единственный показатель говорит вам, что Джей Катлер продемонстрировал в играх плей-офф с участием Chicago Bears худшую эффективность, чем Аарон Роджерс. С другой стороны, тот же показатель ничего не скажет вам о том, потерпел ли тот или иной куортербек в ходе игры досадную неудачу (например, его идеальная передача не была поймана принимающим, а затем перехвачена), удавалось ли ему действовать с максимальной отдачей в определяющих с точки зрения конечного результата ключевых розыгрышах (поскольку весовые коэффициенты всех розыгрышей одинаковы и не зависят от их важности для конечного результата), насколько успешно действовала защита и т. д.
Парадоксально, что те же люди, которые свободно рассуждают о статистике в контексте спорта, погоды или академической успеваемости, начинают теряться, когда исследователь переходит к объяснению чего-нибудь наподобие коэффициента Джини – стандартного инструмента в экономике, демонстрирующего степень неравенства доходов. Ниже я объясню суть данного коэффициента, сейчас же для нас главное – признать, что между коэффициентом Джини и рейтингом распасовщика нет принципиальных отличий. Оба позволяют представить сложную информацию в виде единственного числового показателя. Как таковой коэффициент Джини обладает достоинствами большинства описательных статистик, а именно: обеспечивает удобный способ сравнения распределения дохода в двух странах или в одной стране в разные моменты времени.
Коэффициент Джини помогает оценить по шкале от 0 до 1, насколько равномерно распределяется в стране совокупный доход. Этот статистический показатель можно вычислить для материального благосостояния или годового дохода, причем он может быть рассчитан на индивидуальном или семейном уровне. (Все эти значения будут сильно коррелированны, но не идентичны.) У коэффициента Джини, подобно рейтингу распасовщика, нет какого-либо собственного, внутренне присущего ему смысла – это всего лишь инструмент для сравнения. У страны, в которой все семьи имеют одинаковый уровень благосостояния, был бы нулевой коэффициент Джини. А в той стране, где все богатство сосредоточено в руках одной семьи, он равнялся бы единице. Как вы, наверное, догадались, чем ближе значение к единице, тем выше степень расслоения общества. Согласно данным Центрального разведывательного управления (между прочим, ЦРУ активно занимается сбором статистических данных)[4], коэффициент Джини для Соединенных Штатов равен 0,45. И что?
Если этот показатель поместить в определенный контекст, он может многое нам рассказать. Например, коэффициент Джини для Швеции составляет 0,23; для Канады – 0,32; для Китая – 0,42; для Южной Африки 0,65[5]. Анализ этих значений позволяет получить представление о том, какое место в мире занимают Соединенные Штаты с точки зрения неравенства распределения доходов. Можно также проанализировать, как коэффициент Джини изменяется со временем в одной и той же стране. Например, в 1997 году для Соединенных Штатов он равнялся 0,41, а в следующем десятилетии достиг 0,45 (самые последние данные ЦРУ относятся к 2007 году). Это дает возможность составить объективную картину нарастания неравенства в распределении богатства по мере процветания Соединенных Штатов (во всяком случае на рассматриваемом отрезке времени). Кроме того, мы можем сравнить изменения коэффициента Джини в разных странах примерно за один и тот же период времени. Скажем, в Канаде за указанный период он практически остался прежним. Швеция на протяжении двух последних десятилетий переживала фазу значительного экономического роста, однако коэффициент Джини в ней фактически снизился с 0,25 в 1992 году до 0,23 в 2005-м; это означает, что за указанный период Швеция не только стала богаче, но и доходы в ней начали распределяться более равномерно.
Можно ли считать коэффициент Джини идеальным показателем неравенства? Отнюдь нет – точно так же как рейтинг распасовщика нельзя считать идеальным показателем эффективности действий куортербека. Но несомненно одно: он позволяет нам получить весьма ценную информацию о социально значимом явлении – неравенстве в распределении богатства – в достаточно удобном формате.
Итак, мы медленно продвигаемся к получению ответа на вопрос, поставленный в названии этой главы: в чем суть? А в том, что статистика помогает нам обрабатывать данные, хотя на самом деле это всего лишь еще одно название информации. Подчас эти данные тривиальны, как в случае спортивной статистики, а подчас проливают свет на природу человеческого общества, как в случае коэффициента Джини.
Но, как любят повторять в телевизионных рекламных роликах, это еще не все! Хол Вариан, главный экономист компании Google, в интервью The New York Times сказал, что в следующем десятилетии работа со статистическими данными станет «модной профессией», а точнее «сексуальной» (дословное выражение Хола Вариана: the sexy job)[6]. Я, наверное, окажусь первым, кто пришел к выводу о весьма превратном представлении некоторых экономистов о том, что следует считать «сексуальным». Тем не менее предлагаю рассмотреть несколько никак не связанных между собой вопросов.
• Как уличить учебные заведения в подтасовке результатов стандартизированных тестов?
• Откуда Netflix[7] известно о том, какого рода фильмы вам нравятся?
• Как определить, какие вещества и образ жизни вызывают раковые заболевания, учитывая, что мы не можем проводить над людьми экспериментов, приводящих к заболеванию раком?
• Можно ли рассчитывать на более успешный исход хирургической операции, если молиться за пациента?
• Существует ли реальная экономическая выгода в получении диплома какого-либо из престижных колледжей или университетов?
• Что является причиной роста заболеваемости аутизмом?
Статистика способна помочь нам (или, как мы рассчитываем, поможет в ближайшем будущем) получить ответы на эти вопросы.
Наш мир все быстрее и быстрее генерирует все большие и большие объемы данных. Тем не менее, как справедливо отметила The New York Times, «данные – всего лишь исходный материал знаний»[8],[9]. Статистика – самый мощный из имеющихся в нашем распоряжении инструментов для практического использования информации, например для оценивания эффективности действий бейсболистов или более справедливой оплаты труда преподавателей. Ниже приведен краткий обзор того, как статистика способна придать смысл исходным данным.
Счет партии в боулинг является описательной (дескриптивной) статистикой. То же можно сказать и о каком-либо среднем показателе (например, в спорте). Большинство американских спортивных болельщиков в возрасте старше пяти лет неплохо разбираются в описательной статистике. Мы используем численные показатели в спорте и других сферах жизни для подытоживания информации. Насколько Микки Мэнтл был хорош как бейсболист? Его итоговый рейтинг как хиттера составил 0,298. Для бейсбольных болельщиков это весьма красноречивое число. Итоговый рейтинг 0,298 – выдающийся показатель, если принять во внимание, что в нем учитываются результаты Микки Мэнтла за восемнадцать лет карьеры профессионального бейсболиста[10]. (Хотя, согласитесь, если итог жизни человека можно выразить одним-единственным числом, это несколько разочаровывает и настраивает на мысли о бренности человеческого бытия.) Разумеется, фанаты бейсбола должны помнить о существовании другой описательной статистики, которая, возможно, отражает ценность того или иного бейсболиста гораздо лучше, чем пресловутый средний показатель.
Академическая успеваемость учащихся школ и колледжей в США оценивается с помощью среднего балла. В стране используется шкала с буквенными обозначениями, где каждой букве соответствует определенный балл: как правило, A = 4 балла, B = 3 балла, C = 2 балла и т. д. По окончании учебного заведения, когда абитуриенты поступают в колледжи, а выпускники колледжей подыскивают себе работу, средний балл становится удобным инструментом для оценивания их академического потенциала. Тот, у кого средний балл 3,7, явно сильнее выпускника со средним баллом 2,5. Таким образом, средний балл является весьма полезной описательной статистикой. Его легко вычислить, понять и сравнивать с баллами других учащихся.
Тем не менее данный показатель не идеален. В нем не учитывается сложность учебных программ, которые проходят разные ученики. Как можно сравнивать знания учащегося со средним баллом 3,4, обучавшегося по относительно легкой программе, и его сверстника со средним баллом 2,5, изучавшего математику, физику, химию и другие сложные предметы? В свое время я посещал школу, которая пыталась решить эту проблему, присваивая таким дисциплинам дополнительные весовые коэффициенты, в результате чего оценка A по предмету повышенной трудности соответствовала пяти баллам, а по обычному предмету приравнивалась к четырем. Однако у данного подхода были существенные минусы. Моя мать довольно быстро уяснила, как эта «поправка» влияет на средний балл. Дело в том, что для таких учеников, как я (изучавших много сложных предметов), максимальная оценка A по любому из обычных предметов (например, по физкультуре или основам безопасности жизнедеятельности) не могла превышать 4 баллов, что снижало средний балл, как бы хорошо мы ни учились. В результате родители запретили мне посещать в школе курсы вождения автомобиля, поскольку даже самые высокие оценки по этому курсу уменьшали мои шансы на поступление в какой-либо престижный колледж и последующие занятия писательским трудом. Поэтому они отправили меня в частную (платную) школу вождения, которую мне пришлось посещать летом.
Глупость? Конечно! Но одной из тем, которые я затрону в этой книге, будет опасность чрезмерного увлечения любой из описательных статистик, поскольку это может привести к ошибочным умозаключениям и подтолкнуть к нежелательным действиям. В первоначальном варианте книги я использовал выражение «упрощенная описательная статистика», однако в конечном счете выбросил слово «упрощенная», поскольку оно показалось мне заведомо избыточным. Описательная статистика для того и существует, чтобы упрощать, что всегда подразумевает некоторую потерю нюансов и деталей. Каждый, кто работает с числами, должен воспринимать это как данность.
Сколько бездомных живет на улицах Чикаго? Как часто женатые пары занимаются сексом? На первый взгляд у этих вопросов нет ничего общего. На самом же деле на каждый из них можно ответить (правда, не с абсолютной точностью) с помощью базовых статистических инструментов. Одна из ключевых функций статистики – использование имеющихся данных для выдвижения аргументированных предположений, касающихся вопросов, исчерпывающий ответ на которые невозможно дать из-за отсутствия полной информации. Короче говоря, мы можем использовать данные из «известного мира» для построения обоснованных гипотез относительно «неизвестного мира».
Начнем с вопроса о бездомных. Точно подсчитать их количество в крупном мегаполисе и дорого, и затруднительно. Тем не менее располагать численной оценкой этой группы населения необходимо с целью предоставления социальных услуг, обоснования права на получение части доходов штата и федеральных доходов и соответствующего представительства в Конгрессе. Одним из важных статистических методов является выборочное исследование – процесс сбора данных по какой-то небольшой области, например нескольких районов, где проводилась перепись населения, чтобы на их основе сделать умозаключение о количестве бездомных в городе в целом. Такой подход требует значительно меньших ресурсов, чем попытка сосчитать всех бездомных; к тому же при правильном проведении выборочного исследования можно получить очень близкий к точному результат.
Опрос общественного мнения – еще одна форма статистической выборки. Скажем, исследовательская организация опрашивает членов среднестатистических семей, чтобы выяснить их точку зрения на ту или иную проблему или их мнение о том или ином политическом деятеле. Сделать это, естественно, гораздо проще, дешевле и быстрее, чем обойти все домохозяйства в соответствующем штате или стране в целом. По расчетам Американского института общественного мнения (Институт Гэллапа), методологически правильный опрос 1000 семей дает практически такие же результаты, как и опрос всех семей в Соединенных Штатах.
Именно таким способом нам удалось выяснить, как часто, с кем и как американцы занимаются сексом. В середине 1990-х годов Национальный центр изучения общественного мнения при Чикагском университете провел масштабное исследование сексуального поведения населения страны. Результаты основывались на детальных опросах крупной репрезентативной выборки взрослых американцев. Если вы продолжите чтение этой книги, то в главе 10 узнаете подробности. В каких еще книгах, посвященных статистике, вы могли бы почерпнуть подобные сведения?
Казино никогда не бывают внакладе в долгосрочной перспективе. Это не означает, что они зарабатывают деньги в любой момент, но в конечном итоге остаются прибыльными, как бы ни складывалась каждая отдельно взятая игра. Весь игорный бизнес построен на азартных играх, поэтому исход каждой из них непредсказуем. В то же время базовые вероятности наступления соответствующих событий – выпадения двадцати одного очка в блек-джек или зеро при игре в рулетку – известны. И когда эти базовые вероятности выступают в пользу казино (а это происходит всегда), можно не сомневаться, что по мере увеличения количества ставок вероятность того, что истинным победителем окажется игорное заведение, повышается, несмотря на мелкие «досадные недоразумения», случающиеся по ходу дела.
Данный феномен характерен не только для казино, но и для многих других сфер нашей жизни. Компаниям постоянно приходится оценивать риски, связанные со всевозможными неблагоприятными факторами. Полностью исключить такие риски невозможно – точно так же как казино не может гарантировать, что, сделав ставку, вы не сорвете крупный куш, доставив тем самым владельцам заведения немалое огорчение. Однако любой бизнес, сталкивающийся с неопределенностью, может управлять рисками, организовав соответствующие процессы таким образом, чтобы снизить вероятность того или иного неблагоприятного исхода (начиная со стихийного бедствия и заканчивая выпуском бракованного изделия) до приемлемого уровня. Компании на Уолл-стрит зачастую пытаются оценивать риски, связанные с их портфелями при разных сценариях, причем каждому из этих сценариев в зависимости от вероятности его реализации присваивается определенный вес. Финансовый кризис 2008 года отчасти спровоцировали события на рынке, наступление которых считалось крайне маловероятным (например, как если бы все игроки в казино за один вечер оказались в крупном выигрыше). Далее в этой книге я попытаюсь доказать, что модели, которыми руководствовались компании на Уолл-стрит, были изначально ущербными, а данные, использовавшиеся для оценивания ключевых рисков, – слишком ограниченными, однако сейчас я лишь хочу сказать, что в основу любой модели, имеющей дело с рисками, должны быть положены вероятности.
Премиум
О проекте
О подписке